Development of Next-Generation Machine Intelligence for Predicting Material Properties, Considering the Influence of Experimental Processes and Sample Structures
Project/Area Number |
20K22466
|
Research Category |
Grant-in-Aid for Research Activity Start-up
|
Allocation Type | Multi-year Fund |
Review Section |
0401:Materials engineering, chemical engineering, and related fields
|
Research Institution | Kyoto University |
Principal Investigator |
Kumagai Masaya 京都大学, 複合原子力科学研究所, 特定助教 (00881054)
|
Project Period (FY) |
2020-09-11 – 2023-03-31
|
Project Status |
Completed (Fiscal Year 2022)
|
Budget Amount *help |
¥2,860,000 (Direct Cost: ¥2,200,000、Indirect Cost: ¥660,000)
Fiscal Year 2021: ¥1,430,000 (Direct Cost: ¥1,100,000、Indirect Cost: ¥330,000)
Fiscal Year 2020: ¥1,430,000 (Direct Cost: ¥1,100,000、Indirect Cost: ¥330,000)
|
Keywords | マテリアルズ・インフォマティクス / プロセス・インフォマティクス / 機械学習 / 材料工学 / マテリアルズインフォマティクス / 熱電変換材料 |
Outline of Research at the Start |
本研究では、論文から抽出した実験的要素(実験プロセスや試料構造)を実験的物性値に紐付けた新しい大規模データを作成し、実験的要素に基づいた高精度な物性値予測ができる次世代Materials Informatics(MI)を開発する。実験値物性値には、本研究者らがこれまでに構築した世界最大規模の実験的物性値データベースを使用する。また解釈性の高い機械学習手法を使用することにより、実験的要素と物性値との関係性を明らかにする。
|
Outline of Final Research Achievements |
In this study, we analyzed the relationships among process, structure, and physical properties and created our own large dataset. The process information in this study was collected by extracting text from PDFs of research papers. To analyze the relationship between structural information and physical properties, a machine learning model was constructed using X-ray diffraction patterns as input and crystal systems, volume, density, and volume modulus as learning targets. The original large dataset created during this research period has been publicly released on Figshare. The findings of this research were also disseminated externally through various means, including submissions to domestic and international conferences and journals.
|
Academic Significance and Societal Importance of the Research Achievements |
プロセス情報を含めた物性の予測を可能にすることは、新規材料の発見のみならず、製造プロセスの改善に貢献することができるため大きな意義がある。また、XRDと物性との関係性を大規模なデータを利用して明らかにできたことは、これまで結晶構造と物性の関係性を紐解く上で学術的に意義がある。さらに、本研究期間に作成した大規模実験データは、これからの実験MIを推進する基盤データとなると考えている。
|
Report
(4 results)
Research Products
(10 results)