Development of high-performance quinoid-based semiconducting polymers
Project/Area Number |
20K22535
|
Research Category |
Grant-in-Aid for Research Activity Start-up
|
Allocation Type | Multi-year Fund |
Review Section |
0501:Physical chemistry, functional solid state chemistry, organic chemistry, polymers, organic materials, biomolecular chemistry, and related fields
|
Research Institution | Hiroshima University |
Principal Investigator |
Mikie Tsubasa 広島大学, 先進理工系科学研究科(工), 助教 (40881280)
|
Project Period (FY) |
2020-09-11 – 2022-03-31
|
Project Status |
Completed (Fiscal Year 2021)
|
Budget Amount *help |
¥2,860,000 (Direct Cost: ¥2,200,000、Indirect Cost: ¥660,000)
Fiscal Year 2021: ¥1,430,000 (Direct Cost: ¥1,100,000、Indirect Cost: ¥330,000)
Fiscal Year 2020: ¥1,430,000 (Direct Cost: ¥1,100,000、Indirect Cost: ¥330,000)
|
Keywords | 有機半導体材料 / π共役系ポリマー / 半導体ポリマー / キノイド骨格 / 有機電界効果トランジスタ / 有機エレクトロニクス / 有機半導体 / 主鎖内伝導 / 結合交替 |
Outline of Research at the Start |
優れた電荷輸送性を示すπ共役系ポリマーの開発は、有機デバイスの高性能化において重要課題の1つである。従来、π-π相互作用向上により高い「主鎖間伝導」を持つポリマーが多数開発されてきたが、本研究では、ポリマー主鎖の共役長拡張による「主鎖内伝導」の向上に着目した。共役長拡張の有効な手段であるキノイド骨格の導入により、高い主鎖内伝導と主鎖間伝導を両立する「高性能電荷輸送ポリマー」の創出を目指す。
|
Outline of Final Research Achievements |
Rational design of π-conjugated polymers for improving “intrachain” charge carrier transport along the backbone still remains a formidable challenge. In this study, we designed and synthesized new π-conjugated polymers based on non-fused and fused ring quinoid structures. Careful investigation of electronic properties, associated with the structural analysis of the model compounds, structural orders, and theoretical band simulations suggested that highly π-electron delocalization along the π-conjugated backbone resulted in the greatly improved intrachain charge carrier transport and thus the remarkably high mobility in the π-conjugated polymer. We believe that our study would provide new guidelines for the design of π-conjugated polymers with high intrachain charge carrier transport.
|
Academic Significance and Societal Importance of the Research Achievements |
従来のポリマー主鎖間の電荷輸送性を改善するという開発指針に基づいた研究では、π共役系ポリマーの電荷移動度は頭打ちになりつつあった。本研究成果により、ポリマー主鎖内の電荷輸送性向上が可能となったことで、今後、さらにπ共役系ポリマーの高移動度化が進むことが期待される。高移動度ポリマーの開発により、有機トランジスタのみならず有機薄膜太陽電池や有機熱電変換素子など、様々なプリンテッドデバイスの性能が飛躍的に向上し、IoT社会、低炭素化社会実現に大きく貢献することができる。
|
Report
(3 results)
Research Products
(30 results)