Project/Area Number |
20K22543
|
Research Category |
Grant-in-Aid for Research Activity Start-up
|
Allocation Type | Multi-year Fund |
Review Section |
0501:Physical chemistry, functional solid state chemistry, organic chemistry, polymers, organic materials, biomolecular chemistry, and related fields
|
Research Institution | Institute of Physical and Chemical Research |
Principal Investigator |
OKADA DAICHI 国立研究開発法人理化学研究所, 創発物性科学研究センター, 特別研究員 (10880346)
|
Project Period (FY) |
2020-09-11 – 2022-03-31
|
Project Status |
Completed (Fiscal Year 2021)
|
Budget Amount *help |
¥2,860,000 (Direct Cost: ¥2,200,000、Indirect Cost: ¥660,000)
Fiscal Year 2021: ¥1,430,000 (Direct Cost: ¥1,100,000、Indirect Cost: ¥330,000)
Fiscal Year 2020: ¥1,430,000 (Direct Cost: ¥1,100,000、Indirect Cost: ¥330,000)
|
Keywords | 光化学 / 光起電力 / 電荷分離 / 非線形光学応答 / 強結合状態 / 起電力 / 非線形光学効果 / 光-物質複合状態 / 強結合 / 光-物質間相互作用 / 太陽電池 / エキサイプレックス / 光物質強結合状態 / ポラリトン / 光共振器 |
Outline of Research at the Start |
これまで、物質の物性制御法は、多くの場合、分子合成を基本とした分子の化学的修飾であった。本研究では、分子と光が強く相互作用した光物質複合状態を用いた新規物性制御の道を探る。光共振器に閉じ込められた光子が分子の持つ特定の電子遷移や振動遷移と強く結合すると、分子の電子状態やモースポテンシャルが変化した新たな光と物質の複合状態が作り出される。本研究では、光電子物性おいて必要不可欠である電子移動(電荷分離)の強結合状態場での振る舞いを高速過渡分光などを用いて調査する。また、その解明と共に太陽電池、光触媒への応用展開にも試みる。光共振器を用いた自在な光電子物性制御の道の開拓に試みる。
|
Outline of Final Research Achievements |
The photovoltaic effect is an essential properties for modern society. It arises mainly from the charge separation process at the P-N junction. On the other hand, bulk photovoltaic effects exhibited by symmetry-breaking materials have also recently attracted attention. In this study, we investigate how the light-matter hybridized state which are generated by coherent coupling between light and matter in optical cavity, affects these processes. The carrier lifetime of the P3HT/PCBM mixture was measured by microwave conductivity measurements under light-matter hybridized state. However, no significant difference was found between inside cavity and outside cavity. On the other hand, we reveal that the second-order nonlinear optical effects, which are important for improving the bulk photovoltaic effect, is possible to be increased by one order of magnitude inside the optical cavity.
|
Academic Significance and Societal Importance of the Research Achievements |
近年、光と物質の強結合を用いた物性制御法が注目されはじめている。強結合状態とは、光共振器中において生じる光と物質の複合状態である。強結合状態の理解は、共振器を用いた自在な物性制御術を生み出すこととなり、サイエンスの発展に貢献する。本研究では、光起電力効果に対する基礎的な知見を得ることができた。特に非線形光学応答の増大は、現在注目されているバルク光起電力効果の高効率化につながると期待できる。
|