Exploration of tissue-specific selective pressure on tumors; integration of time-course analysis by liquid biopsy
Project/Area Number |
20K22918
|
Research Category |
Grant-in-Aid for Research Activity Start-up
|
Allocation Type | Multi-year Fund |
Review Section |
0903:Organ-based internal medicine and related fields
|
Research Institution | The University of Tokyo |
Principal Investigator |
|
Project Period (FY) |
2020-09-11 – 2022-03-31
|
Project Status |
Completed (Fiscal Year 2021)
|
Budget Amount *help |
¥2,860,000 (Direct Cost: ¥2,200,000、Indirect Cost: ¥660,000)
Fiscal Year 2021: ¥1,430,000 (Direct Cost: ¥1,100,000、Indirect Cost: ¥330,000)
Fiscal Year 2020: ¥1,430,000 (Direct Cost: ¥1,100,000、Indirect Cost: ¥330,000)
|
Keywords | 肺癌 / リキッドバイオプシー |
Outline of Research at the Start |
癌細胞集団は決して均一な性状の細胞の集団ではなく、heterogeneityを持った集団であり、それに対してintrinsicないしextrinsicな「選択圧」が加わることで、heterogenousな集団の構成がダイナミックに変化していることが明らかとなってきている。本研究は、過去の臨床知見から転移組織特異的な「選択圧」の存在を仮定し、その分子メカニズムの解明を進めると同時に、その選択を受けたsubpopulationの存在を早期から低侵襲で検出することを目指すものである。
|
Outline of Final Research Achievements |
It has been shown in our previous studies that tumor cells are subjected to different selection pressures in each tissue in lung cancer patients with multiple metastases, resulting in different heterogeneity in each tissue, which has a significant impact on treatment responsiveness in a body as a whole. In this study, we focused on epithelial-mesenchymal transition as one of the mechanisms that confer heterogeneity to lung cancer cells. To clarify the details of epithelial-mesenchymal transition at the cellular level (i.e., not only the change in compositional allocation within a cell population), we used single-cell gene expression analysis technology to capture the intermediate stage of epithelial-mesenchymal transition. We have developed a model to predict prognosis of lung cancer patients by combining single-cell gene expression analysis with machine learning.
|
Academic Significance and Societal Importance of the Research Achievements |
肺癌の多発転移では転移組織毎にわずかに性状の異なった細胞集団が存在し、生体全体としてみるとそれが治療応答性に大きな影響を与えていることが、本研究者らのこれまでの研究で明らかとなっている。本研究では、正常肺組織からの単一細胞遺伝子発現データを用いて、上皮系・間葉系の発現プロファイルに対する機械学習を行い、それを肺癌組織の遺伝子発現データに適応することで、各肺癌組織が上皮間葉転換のどのような段階にあるかを判定するモデルを構築した。正常肺からの単一細胞遺伝子発現データに基づく腫瘍細胞の遺伝子発現パターンの解析は、肺癌患者の予後予測に有益な情報をもたらす可能性が示唆された。
|
Report
(3 results)
Research Products
(8 results)