Project/Area Number |
20KK0318
|
Research Category |
Fund for the Promotion of Joint International Research (Fostering Joint International Research (A))
|
Allocation Type | Multi-year Fund |
Review Section |
Basic Section 36010:Inorganic compounds and inorganic materials chemistry-related
|
Research Institution | Toyama Prefectural University (2023) Central Research Institute of Electric Power Industry (2020-2022) |
Principal Investigator |
Shimizu Sunao 富山県立大学, 工学部, 准教授 (60595932)
|
Project Period (FY) |
2021 – 2023
|
Project Status |
Completed (Fiscal Year 2023)
|
Budget Amount *help |
¥13,260,000 (Direct Cost: ¥10,200,000、Indirect Cost: ¥3,060,000)
|
Keywords | 熱電効果 / ナノ材料 / ナノ結晶 / 電界効果 / 有機合成 |
Outline of Research at the Start |
近年、IoT社会におけるトリリオンセンサネットワーク用自立型電源として、環境から微小エネルギーを取り出すエナジーハーベスティングの重要性が認識され、その技術開拓が社会的な課題となっている。その技術の一つとして「物質中の温度勾配を電圧に変換する古典的な物理現象」である熱電効果による発電が改めて注目を集めている。特に低次元構造を有するナノ材料は優れた熱電特性を示すことが期待され、基礎・応用の両面から世界中で研究が進められている。本国際共同研究では、応募者の「イオン液体を用いたキャリア数制御技術」と海外共同研究者の「有機合成技術」を組み合わせることで、低次元ナノ結晶の熱電現象を開拓する。
|
Outline of Final Research Achievements |
In this research subject, we have fabricate the field effect transistors based on nano-crystals thin films as an international collaboration research. The principal investigator and the foreign collaborator have expertises of nano-device fabrication and organic synthesis, respectively. We fabricated the solutions of CdSe and CuZnInSe nano-crystals with organic synthesis technique. The thin films of CdSe and CuZnInSe nano-crystals were prepared with a spin-coating method, where the thickness of the films were less than 100 nm. Using those thin films, the field effect transistors were fabricated and the transistor operations were successfully demonstrated. Moreover, we have constructed an international research network based on the current project between Japan and Germany, we are going to pursue further collaboration in the future.
|
Academic Significance and Societal Importance of the Research Achievements |
近年、環境(熱・光・振動)から微小エネルギーを取り出すエナジーハーベスティング技術の開発が重要な課題の一つとなっており、「物質中の温度勾配を電圧に変換する古典的な物理現象」である熱電効果による発電が、有力なエネルギー源の一つとして改めて注目を集めている。本研究のような基盤的な材料研究の継続が、優れた熱電特性を示す材料の開発に繋がると考えられる。
|