Mixed motivic sheaves, category theory, and study of cycle complexes
Project/Area Number |
21340002
|
Research Category |
Grant-in-Aid for Scientific Research (B)
|
Allocation Type | Single-year Grants |
Section | 一般 |
Research Field |
Algebra
|
Research Institution | Tohoku University |
Principal Investigator |
HANAMURA Masaki 東北大学, 大学院・理学研究科, 教授 (60189587)
|
Co-Investigator(Renkei-kenkyūsha) |
KIMURA Shunichi 広島大学, 大学院・理学研究科, 教授 (10284150)
ISHIDA Masanori 東北大学, 大学院・理学研究科, 教授 (30124548)
YUKIE Akihiko 京都大学, 大学院・理学研究科, 教授 (20312548)
|
Project Period (FY) |
2009 – 2011
|
Project Status |
Completed (Fiscal Year 2011)
|
Budget Amount *help |
¥6,630,000 (Direct Cost: ¥5,100,000、Indirect Cost: ¥1,530,000)
Fiscal Year 2011: ¥2,210,000 (Direct Cost: ¥1,700,000、Indirect Cost: ¥510,000)
Fiscal Year 2010: ¥2,210,000 (Direct Cost: ¥1,700,000、Indirect Cost: ¥510,000)
Fiscal Year 2009: ¥2,210,000 (Direct Cost: ¥1,700,000、Indirect Cost: ¥510,000)
|
Keywords | 代数幾何学 / モティーフ理論 / 三角圏 / 代数的サイクル / モティーフ / Chow群 / 代数サイクル / コホモロジー / チャウ群 |
Research Abstract |
Quasi DG category, a generalization of DG category given by the principal researcher, is a notion that appears in the theory of mixed motivic sheaves. We developed the basic theory of quasi DG categories. The mail features are basic axioms of a quasi DG category, the notion of C-diagrams with values in a quasi DG category, additivity of the function complexes, the construction of the quasi DG category of C-diagrams, and the proof that the homotopy category of the quasi DG category of C-diagrams has the structure of a triangulated category.In particular, when the function complex (depending on n objects) that constitutes part of the notion, is additive in each variable, the same property was proven to hold for the function complex for C-diagrams. We described the Chow cohomology of an algebraic surface using its resolution of singularities. In particular, we gave a condition for Chow cohomology and homology to coincide. We showed the blow-up formula for the motives and higher Chow groups of a quasi-projective variety.
|
Report
(4 results)
Research Products
(20 results)