The geometry of complex symplectic varieties
Project/Area Number |
21340005
|
Research Category |
Grant-in-Aid for Scientific Research (B)
|
Allocation Type | Single-year Grants |
Section | 一般 |
Research Field |
Algebra
|
Research Institution | Kyoto University |
Principal Investigator |
|
Project Period (FY) |
2009 – 2012
|
Project Status |
Completed (Fiscal Year 2012)
|
Budget Amount *help |
¥8,840,000 (Direct Cost: ¥6,800,000、Indirect Cost: ¥2,040,000)
Fiscal Year 2012: ¥2,080,000 (Direct Cost: ¥1,600,000、Indirect Cost: ¥480,000)
Fiscal Year 2011: ¥2,340,000 (Direct Cost: ¥1,800,000、Indirect Cost: ¥540,000)
Fiscal Year 2010: ¥2,080,000 (Direct Cost: ¥1,600,000、Indirect Cost: ¥480,000)
Fiscal Year 2009: ¥2,340,000 (Direct Cost: ¥1,800,000、Indirect Cost: ¥540,000)
|
Keywords | 複素シンプレクティック多様体 / ポアソン変形 / 双有理幾何 / べき零多様体 / 接触構造 / シンプレクティック特異点 / べき零軌道 / 接触幾何 / Slodowy切片 / シンプレクティック超曲面 / スロードウィースライス / ポアソン幾何 / 特異点解消 |
Research Abstract |
We have studied affine symplectic varieties and their crepant resolutions from the point of view of birational geometry and Poisson deformations.In particular, we proved that the Poisson deformations of affine symplectic varieties are unobstructed and we furthermore showed that those varieties have crepant resolutions if and only if they can be smoothed by Poisson deformations. We also gave a characterization of the nilpotent varieties of complex semisimple Lie algebras.
|
Report
(5 results)
Research Products
(47 results)