Geometric methods in discrete integrablesystems
Project/Area Number |
21340036
|
Research Category |
Grant-in-Aid for Scientific Research (B)
|
Allocation Type | Single-year Grants |
Section | 一般 |
Research Field |
Global analysis
|
Research Institution | Kobe University |
Principal Investigator |
YAMADA Yasuhiko 神戸大学, 大学院・理学研究科, 教授 (00202383)
|
Co-Investigator(Kenkyū-buntansha) |
NOUMI Masatohi 神戸大学, 自然科学系先端融合研究環重点研究部, 教授 (80164672)
OHTA Yasuhiro 神戸大学, 大学院・理学研究科, 教授 (10213745)
SAITO Masahiko 神戸大学, 大学院・理学研究科, 教授 (80183044)
|
Project Period (FY) |
2009 – 2012
|
Project Status |
Completed (Fiscal Year 2012)
|
Budget Amount *help |
¥5,330,000 (Direct Cost: ¥4,100,000、Indirect Cost: ¥1,230,000)
Fiscal Year 2012: ¥1,170,000 (Direct Cost: ¥900,000、Indirect Cost: ¥270,000)
Fiscal Year 2011: ¥1,430,000 (Direct Cost: ¥1,100,000、Indirect Cost: ¥330,000)
Fiscal Year 2010: ¥1,170,000 (Direct Cost: ¥900,000、Indirect Cost: ¥270,000)
Fiscal Year 2009: ¥1,560,000 (Direct Cost: ¥1,200,000、Indirect Cost: ¥360,000)
|
Keywords | 離散可積分系 / ラックス表示 / 幾何学 / 特殊解 / パデ近似 / 共形場理論 / パンルヴェ方程式 / パデ補間 / 量子パンルヴェ方程式 / 特殊関数解 / 可積分系 / 楕円差分 / 超幾何函数 / 行列式表示 / q差分 / Lax形式 / AGT予想 / Fuji-Suzuki-Tsuda方程式 / ラックス形式 / 代数曲線 |
Research Abstract |
We studied mainly the discrete Painleve equations. The Lax formalism for various cases including the elliptic difference Painleve equation of type E_8 was constructed, and its geometric characterization was clarified. We constructed the corresponding Pade interpolation problem and derive simple expressions for the Painleve equation, Lax form and special solutions. Relations among the Gauge theory, conformal field theory and quantum Painleve equations were also studied.
|
Report
(5 results)
Research Products
(54 results)