Project/Area Number |
21510164
|
Research Category |
Grant-in-Aid for Scientific Research (C)
|
Allocation Type | Single-year Grants |
Section | 一般 |
Research Field |
Social systems engineering/Safety system
|
Research Institution | Tokyo University of Science |
Principal Investigator |
YABE Hiroshi 東京理科大学, 理学部, 教授 (90158056)
|
Co-Investigator(Kenkyū-buntansha) |
OGASAWARA Hideho 東京理科大学, 理学部, 准教授 (00231217)
NARUSHIMA Yasushi 横浜国立大学, 経営学部, 准教授 (70453842)
|
Research Collaborator |
KATO Atsushi
KIMURA Saeko
KOBAYASHI Hiroshi
KOBAYASHI Michiya
SUGASAWA Kiyohisa
SUGIKI Kaori
NAKAMURA Wataru
MURAI Kyoko
YANAGIDA Kento
LU Peixun
WAKAMATSU Takehiko
|
Project Period (FY) |
2009 – 2012
|
Project Status |
Completed (Fiscal Year 2012)
|
Budget Amount *help |
¥3,770,000 (Direct Cost: ¥2,900,000、Indirect Cost: ¥870,000)
Fiscal Year 2012: ¥910,000 (Direct Cost: ¥700,000、Indirect Cost: ¥210,000)
Fiscal Year 2011: ¥910,000 (Direct Cost: ¥700,000、Indirect Cost: ¥210,000)
Fiscal Year 2010: ¥910,000 (Direct Cost: ¥700,000、Indirect Cost: ¥210,000)
Fiscal Year 2009: ¥1,040,000 (Direct Cost: ¥800,000、Indirect Cost: ¥240,000)
|
Keywords | 最適化理論 / 非線形最適化 / 無制約最小化 / 制約付き最小化 / アルゴリズム / 無制約最小化問題 / 制約条件付き最小化問題 / 半正定値計画法 / 2次錐相補性問題 / 共役勾配法 / 準ニュートン法 / 2次錐相補性問題 / 逐次2次制約2次計画法 / 2次錐計画 |
Research Abstract |
We proposed new conjugate gradient methods and three-term conjugate gradient methods for unconstrained minimization problems. We also proposed a new sequential quadratically constrained quadratic programming method and a primal-dual interior point method for nonlinear semidefinite programming problems. Furthermore, we studied new methods for second-order cone complementarity problems. Convergence properties of the proposed methods were analyzed and their numerical performance was investigated
|