Studies on some open problems concerning flat tori in the unit 3-sphere
Project/Area Number |
21540066
|
Research Category |
Grant-in-Aid for Scientific Research (C)
|
Allocation Type | Single-year Grants |
Section | 一般 |
Research Field |
Geometry
|
Research Institution | Utsunomiya University |
Principal Investigator |
|
Project Period (FY) |
2009 – 2011
|
Project Status |
Completed (Fiscal Year 2011)
|
Budget Amount *help |
¥2,990,000 (Direct Cost: ¥2,300,000、Indirect Cost: ¥690,000)
Fiscal Year 2011: ¥780,000 (Direct Cost: ¥600,000、Indirect Cost: ¥180,000)
Fiscal Year 2010: ¥910,000 (Direct Cost: ¥700,000、Indirect Cost: ¥210,000)
Fiscal Year 2009: ¥1,300,000 (Direct Cost: ¥1,000,000、Indirect Cost: ¥300,000)
|
Keywords | 微分幾何 / 微分幾何学 / 部分多様体 / 3次元球面 / 平坦トーラス / 平均曲率 / 外的直径 / 正則閉曲線 / 2重接触 / 直径 / 波面 / 剛性 / クリフォードトーラス / 接触 / クリフォード トーラス |
Research Abstract |
Diameter conjecture on flat tori in the unit 3-sphere states that the extrinsic diameter of isometrically immersed flat tori in the unit 3-sphere is equal to π. In this research, we proved the conjecture under the assumption that the mean curvature of the immersion is nonnegative or nonpositive. Using this result, we proved that if f is an isometric immersion of a Clifford torus into the unit 3-sphere whose mean curvature is nonnegative or nonpositive, then the immersion f is congruent to the standard embedding of the Clifford torus.
|
Report
(4 results)
Research Products
(12 results)