• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Homotopy theory on singularities of differentiable maps and K-invariant spaces of the jet spaces

Research Project

Project/Area Number 21540085
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeSingle-year Grants
Section一般
Research Field Geometry
Research InstitutionYamaguchi University

Principal Investigator

ANDO Yoshifumi  山口大学, 名誉教授 (80001840)

Co-Investigator(Kenkyū-buntansha) KOMIYA Katuhiro  山口大学, 名誉教授 (00034744)
MIYAZAWA Yasuyuki  山口大学, 大学院・理工学研究科, 教授 (60263761)
NAITOH Hiroo  山口大学, 大学院・理工学研究科, 教授 (10127772)
KIUCHI Isao  山口大学, 大学院・理工学研究科, 教授 (30271076)
KAJI Shizuo  山口大学, 大学院・理工学研究科, 講師 (00509656)
IIYORI Nobuyasu  山口大学, 教育学部, 教授 (00241779)
SATO Yoshihisa  九州工業大学, 情報工学部, 教授 (90231349)
Project Period (FY) 2009 – 2011
Project Status Completed (Fiscal Year 2011)
Budget Amount *help
¥3,640,000 (Direct Cost: ¥2,800,000、Indirect Cost: ¥840,000)
Fiscal Year 2011: ¥1,170,000 (Direct Cost: ¥900,000、Indirect Cost: ¥270,000)
Fiscal Year 2010: ¥1,170,000 (Direct Cost: ¥900,000、Indirect Cost: ¥270,000)
Fiscal Year 2009: ¥1,300,000 (Direct Cost: ¥1,000,000、Indirect Cost: ¥300,000)
Keywords特異点 / 可微分写像 / ホモトピー / 折り目 / コボルディズム. / Thom多項式 / Pontrjagin類 / 折り目写像 / 球面の安定ホモトピー群 / J-image / 安定ホモトピー群 / K-軌道 / ジェット空間 / 写像 / 特性類
Research Abstract

We first proved that there exists an isomorphism of the group of oriented cobordism classes of fold maps of closed oriented n-manifolds to the given oriented closed manifold P of degree$ 0$ to the homotopy group of P to the well-known space F. An element of the n-th stable homotopy group of spheres can be possibly detected by singularities of some extension of a corresponding fold map. We tried to solve this problem in the higher dimensions. Two types of singularities of maps between 4q-manifolds whose Thom polynomials with integer coefficients have nonvanishing coefficients of the leading Pontrjagin class P_{ q} can detect elements of J-images.

Report

(4 results)
  • 2011 Annual Research Report   Final Research Report ( PDF )
  • 2010 Annual Research Report
  • 2009 Annual Research Report
  • Research Products

    (21 results)

All 2012 2011 2010 2009

All Journal Article (13 results) (of which Peer Reviewed: 13 results) Presentation (8 results)

  • [Journal Article] Leading terms of Thom polynomials and J-images2012

    • Author(s)
      Yoshifumi Ando
    • Journal Title

      Kyoto Journal of Mathematics

      Volume: 52 Pages: 345-367

    • Related Report
      2011 Annual Research Report 2011 Final Research Report
    • Peer Reviewed
  • [Journal Article] Gordian distance and polynomial invariants2011

    • Author(s)
      Yasuyuki Miyazawa
    • Journal Title

      Journal of Knot Theory and Its Ramifications

      Volume: 20 Pages: 895-907

    • Related Report
      2011 Annual Research Report 2011 Final Research Report
    • Peer Reviewed
  • [Journal Article] Real hypersurfaces withφ-invariant shape operator in a complex projective space2011

    • Author(s)
      Sadahiro Maeda, Hiroo Naitoh
    • Journal Title

      Glasgow Mathematical Journal

      Volume: 53 Pages: 347-358

    • Related Report
      2011 Final Research Report
    • Peer Reviewed
  • [Journal Article] Analytic properties of double zeta-functions2011

    • Author(s)
      I. kiuchi, Y. Tanigawa, and W. Zhai
    • Journal Title

      Indagationes Mathematicae

      Volume: 21 Pages: 16-29

    • Related Report
      2011 Final Research Report
    • Peer Reviewed
  • [Journal Article] Analytic properties of double zeta-functions2011

    • Author(s)
      I.Kiuchi
    • Journal Title

      Indagationes Mathematics

      Volume: 21 Pages: 16-29

    • Related Report
      2011 Annual Research Report
    • Peer Reviewed
  • [Journal Article] A link invariant dominating the HOMFLY and the Kauffman polynomials2010

    • Author(s)
      Yasuyuki Miyazawa
    • Journal Title

      Journal of Knot Theory and its Ramifications

      Volume: 19 Pages: 1507-1533

    • Related Report
      2011 Final Research Report
    • Peer Reviewed
  • [Journal Article] seen from torus equivariant topology2010

    • Author(s)
      Shizuo Kaji, Equivariant Scubert
    • Journal Title

      Trends in Mathematics-New series

      Volume: 12 Pages: 71-90

    • Related Report
      2011 Final Research Report
    • Peer Reviewed
  • [Journal Article] A link invariant dominating the HOMFLY and the Kauffman polynomials2010

    • Author(s)
      Yasuyuki Mlyazawa
    • Journal Title

      Journal of Knot Theory and its Ramifications?

      Volume: 19 Pages: 1507-1533

    • Related Report
      2010 Annual Research Report
    • Peer Reviewed
  • [Journal Article] Equivariant Scubert, seen from torus equivariant topology2010

    • Author(s)
      Shizuo Kaji
    • Journal Title

      Trends in Mathematics-New series

      Volume: 12 Pages: 71-90

    • Related Report
      2010 Annual Research Report
    • Peer Reviewed
  • [Journal Article] A multi-variable polynomial invariant for unoriented virtual knots and links2009

    • Author(s)
      Yasuyuki Miyazawa
    • Journal Title

      J. Knot Theory Ramifications

      Volume: 18 Pages: 625-649

    • Related Report
      2011 Final Research Report
    • Peer Reviewed
  • [Journal Article] 2-spheres of square$-1$ and the geography of genus-2 Lefschetz fibrations2009

    • Author(s)
      Yoshihisa Sato
    • Journal Title

      J. Math. Sci. Univ. Tokyo

      Volume: 15 Pages: 461-491

    • NAID

      120006906033

    • Related Report
      2011 Final Research Report
    • Peer Reviewed
  • [Journal Article] 2-spheres of square $-1$ and the geography of genus-2 Lefschetz fibrations2009

    • Author(s)
      Yoshihisa Sato
    • Journal Title

      J. Math. Sci. Univ. Tokyo 15 15

      Pages: 461-491

    • NAID

      120006906033

    • Related Report
      2009 Annual Research Report
    • Peer Reviewed
  • [Journal Article] A multi-variable polynomial invariant for unoriented virtual knots and links2009

    • Author(s)
      Yasuyuki Miyazawa
    • Journal Title

      J. Knot Theory Ramifications 18

      Pages: 625-649

    • Related Report
      2009 Annual Research Report
    • Peer Reviewed
  • [Presentation] The HOMFLY polynomial and admissible values2012

    • Author(s)
      Yasuyuki Miyazawa
    • Organizer
      The 8th East Asian School of Knots and Related Topics
    • Place of Presentation
      KAIST, Korea
    • Year and Date
      2012-01-11
    • Related Report
      2011 Annual Research Report 2011 Final Research Report
  • [Presentation] 対象空間の曲面論へのグラスマン幾何的アプローチ2010

    • Author(s)
      内藤博夫
    • Organizer
      研究集会「部分多様体・湯沢2010」
    • Place of Presentation
      新潟県・湯沢グランドホテル
    • Year and Date
      2010-11-27
    • Related Report
      2011 Final Research Report
  • [Presentation] 対象空間の曲面論へのグラスマン幾何的アプローチ2010

    • Author(s)
      内藤博夫
    • Organizer
      研究集会(「部分多様体・湯沢2010」)
    • Place of Presentation
      新潟県・湯沢グランドホテル
    • Year and Date
      2010-11-27
    • Related Report
      2010 Annual Research Report
  • [Presentation] A distance for diagrams of a knot2010

    • Author(s)
      Yasuyuki Miyazawa
    • Organizer
      International Confe rence Japan-Mexico on Topology and its Applications
    • Place of Presentation
      Colima Univ. Mexico.
    • Year and Date
      2010-09-20
    • Related Report
      2011 Final Research Report
  • [Presentation] Equivariant Scubert cal culus of Coxeter groups2010

    • Author(s)
      Shizuo Kaji
    • Organizer
      International Conference Japan-Mexico on Topology and its Applications
    • Place of Presentation
      Colim a Univ. Mexico
    • Year and Date
      2010-09-20
    • Related Report
      2011 Final Research Report
  • [Presentation] Equivariant Scubert calculus of Coxeter groups2010

    • Author(s)
      Shizuo Kaji
    • Organizer
      International Conference Japan-Mexico on Topology and its Applications
    • Place of Presentation
      メキシコ コリマ大学
    • Year and Date
      2010-09-20
    • Related Report
      2010 Annual Research Report
  • [Presentation] An attempt to introd uce the notion of Iitaka-Kodaira dimens ions into Lefschetz fibration2010

    • Author(s)
      Yoshihisa Sato
    • Organizer
      Branched Coverings, Degenerations and Related Topics
    • Place of Presentation
      広島
    • Year and Date
      2010-03-08
    • Related Report
      2011 Final Research Report
  • [Presentation] An attempt to introduce the notion of Iitaka-Kodaira dimensions into Lefschetz fibrations2010

    • Author(s)
      佐藤好久
    • Organizer
      Branched Coverings, Degenerations, and Related Topics 2010
    • Place of Presentation
      広島大学
    • Year and Date
      2010-03-08
    • Related Report
      2009 Annual Research Report

URL: 

Published: 2009-04-01   Modified: 2016-04-21  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi