A blowup condition for solutions of the nonlinear integro-partial differential equation that describes population explosions
Project/Area Number |
21540141
|
Research Category |
Grant-in-Aid for Scientific Research (C)
|
Allocation Type | Single-year Grants |
Section | 一般 |
Research Field |
General mathematics (including Probability theory/Statistical mathematics)
|
Research Institution | Osaka Prefecture University |
Principal Investigator |
TABATA Minoru 大阪府立大学, 工学研究科, 教授 (70207215)
|
Co-Investigator(Kenkyū-buntansha) |
ESHIMA Nobuoki 大分大学, 医学部, 教授 (20203630)
TAKAGI Ichiro 東海大学, 総合経営学部, 教授 (90226746)
|
Project Period (FY) |
2009 – 2011
|
Project Status |
Completed (Fiscal Year 2011)
|
Budget Amount *help |
¥4,420,000 (Direct Cost: ¥3,400,000、Indirect Cost: ¥1,020,000)
Fiscal Year 2011: ¥1,430,000 (Direct Cost: ¥1,100,000、Indirect Cost: ¥330,000)
Fiscal Year 2010: ¥1,430,000 (Direct Cost: ¥1,100,000、Indirect Cost: ¥330,000)
Fiscal Year 2009: ¥1,560,000 (Direct Cost: ¥1,200,000、Indirect Cost: ¥360,000)
|
Keywords | 人口爆発 / 人口移動 / マスター方程式 / 非線形偏微分積分方程式 / 数理モデル / 偏微分積分方程式 / 人口移動理論 / 非線形関数方程式 / 数理社会学 / 数値シミュレーション |
Research Abstract |
We succeed in proving the following proposition : there exists a positive constant such that if initial total population and the gradient of the initial population density are larger than the positive constant, then the mixed problem for the nonlinear integro-partial differential equation that describes population explosions has a blowup solution, which converges to Dirac delta function in the sense of distribution.
|
Report
(4 results)
Research Products
(17 results)