Analysis of the spectral structure of Dirac operators
Project/Area Number |
21540187
|
Research Category |
Grant-in-Aid for Scientific Research (C)
|
Allocation Type | Single-year Grants |
Section | 一般 |
Research Field |
Basic analysis
|
Research Institution | Ehime University |
Principal Investigator |
ITO Hiroshi 愛媛大学, 大学院・理工学研究科, 教授 (90243005)
|
Co-Investigator(Renkei-kenkyūsha) |
YAMADA Osanobu 立命館大学, 理工学部, 教授 (70066744)
TAMURA Hideo 岡山大学, 理学部, 教授 (30022734)
NOMURA Yuji 愛媛大学, 理工学研究科, 准教授 (40282818)
MINE Takuya 京都工芸繊維大学, 工芸科学研究科, 准教授 (90378597)
IWATSUKA Akira 京都工芸繊維大学, 工芸科学研究科, 教授 (40184890)
KADOWAKI Mitsuteru 愛媛大学, 理工学研究科, 准教授 (70300548)
|
Project Period (FY) |
2009 – 2011
|
Project Status |
Completed (Fiscal Year 2011)
|
Budget Amount *help |
¥4,550,000 (Direct Cost: ¥3,500,000、Indirect Cost: ¥1,050,000)
Fiscal Year 2011: ¥1,300,000 (Direct Cost: ¥1,000,000、Indirect Cost: ¥300,000)
Fiscal Year 2010: ¥1,170,000 (Direct Cost: ¥900,000、Indirect Cost: ¥270,000)
Fiscal Year 2009: ¥2,080,000 (Direct Cost: ¥1,600,000、Indirect Cost: ¥480,000)
|
Keywords | 関数解析 / 数理物理 / スペクトル理論 / ディラック作用素 / レゾナンス / 相対論的シュレディンガー作用素 / 固有値 / スペクトル / シュレーディンガー作用素 / 非相対論的極限 |
Research Abstract |
We have investigated the spectral property and the nonrelativistic limit of the relativistic Hamiltonians with a dilation analytic potential diverging at infinity. In particular, we showed that resonances of the Dirac operator appear near resonances of some two Schrodinger operators if the speed of light is sufficiently large. The analysis is based on an abstract theorem proved in this work. The theorem is useful to determine the spectral property of a self-adjoint operator defined as a boundary value of some analytic family of closed operators.
|
Report
(4 results)
Research Products
(35 results)