Theory of characterization and existence for entire solutions to reaction-diffusion equations in the multi-dimensional space.
Project/Area Number |
21654025
|
Research Category |
Grant-in-Aid for Challenging Exploratory Research
|
Allocation Type | Single-year Grants |
Research Field |
Global analysis
|
Research Institution | Ryukoku University |
Principal Investigator |
|
Co-Investigator(Kenkyū-buntansha) |
NINOMIYA Hirokazu 明治大学, 理工学部, 教授 (90251610)
|
Project Period (FY) |
2009 – 2011
|
Project Status |
Completed (Fiscal Year 2011)
|
Budget Amount *help |
¥3,200,000 (Direct Cost: ¥2,900,000、Indirect Cost: ¥300,000)
Fiscal Year 2011: ¥1,300,000 (Direct Cost: ¥1,000,000、Indirect Cost: ¥300,000)
Fiscal Year 2010: ¥900,000 (Direct Cost: ¥900,000)
Fiscal Year 2009: ¥1,000,000 (Direct Cost: ¥1,000,000)
|
Keywords | 反応拡散方程式 / 無限次元力学系 / 進行波 / 全域解 / 分岐理論 / 安定性 / 非線形楕円型方程式 / ヘテロクリニック軌道 / 伝播速度 / FizHugh-Nagumo方程式 / 極限方程式 / 楕円型方程式 / 進行波解 / スポット進行波解 / Lotka-Volterra拡散競争系 |
Research Abstract |
The reaction-diffusion equation is widely accepted as a model to describe pattern formations and propagations of some spatial pattern. In this research we study the equation in order to provide a new existence theory for entire solutions and a characterization of the spatial pattern of the solutions. In consequence we mathematically prove the existence and stability of new type of solutions to some class of reaction-diffusion equations.
|
Report
(4 results)
Research Products
(39 results)