Project/Area Number |
21674001
|
Research Category |
Grant-in-Aid for Young Scientists (S)
|
Allocation Type | Single-year Grants |
Research Field |
Algebra
|
Research Institution | Keio University |
Principal Investigator |
BANNAI Kenichi 慶應義塾大学, 理工学部, 准教授 (90343201)
|
Research Collaborator |
YAMAMOTO Shuji 慶應義塾大学, 理工学部, 特任助教
TAKAI Yuki 慶應義塾大学, 理工学部, 特任助教 (90599698)
MIURA Takashi 慶應義塾大学, 理工学部 (60631934)
NAKAMURA Kentaro 慶應義塾大学, 理工学部, 特任助教 (90595993)
ARAI Keisuke 慶應義塾大学, 理工学部, 特任助教 (80422393)
HAGIHARA Kei 慶應義塾大学, 理工学部, 特任助教 (30512173)
KASHIO Tomokazu 慶應義塾大学, 理工学部, 特任助教 (10403106)
OTSUKI Rei 慶應義塾大学, 理工学部, 特任助教
HASEGAWA Yasuko 慶應義塾大学, 理工学部, 特任助教
TSUSHIMA Takahiro 慶應義塾大学, 理工学部, 研究員 (70583912)
HIROTSUNE Tomoki 慶應義塾大学, 理工学部
ONO Masataka , 慶應義塾大学, 理工学部
KINGS Guido Regensburg大学, Lehrstuhl für Reine Mathematik, 教授
|
Project Period (FY) |
2009-05-11 – 2014-03-31
|
Project Status |
Completed (Fiscal Year 2014)
|
Budget Amount *help |
¥93,340,000 (Direct Cost: ¥71,800,000、Indirect Cost: ¥21,540,000)
Fiscal Year 2013: ¥18,460,000 (Direct Cost: ¥14,200,000、Indirect Cost: ¥4,260,000)
Fiscal Year 2012: ¥18,460,000 (Direct Cost: ¥14,200,000、Indirect Cost: ¥4,260,000)
Fiscal Year 2011: ¥18,460,000 (Direct Cost: ¥14,200,000、Indirect Cost: ¥4,260,000)
Fiscal Year 2010: ¥18,460,000 (Direct Cost: ¥14,200,000、Indirect Cost: ¥4,260,000)
Fiscal Year 2009: ¥19,500,000 (Direct Cost: ¥15,000,000、Indirect Cost: ¥4,500,000)
|
Keywords | 楕円曲線 / 虚数乗法 / Hecke指標 / ポリログ / p進L関数 / p進Beilinson予想 / 整数論 / Eisenstein類 / L関数 / 混合層 / 国際情報交換 / ドイツ / 虚数情報 / 国際研究者交流 |
Outline of Final Research Achievements |
Working on previous research concerning arithmetic geometric object called the “polylogarithm,” we formed a group of young researchers and attacked certain conjectures in arithmetic geometry. We succeeded in solving the p-adic Beilinson conjecture for certain Hecke characters of an imaginary quadratic field. This result is first such result in the non-cyclotomic case. We then discovered a potential candidate for the expression of the polylogarithm in the Hilbert modular case. We expect this candidate will play an important role in solving conjectures in arithmetic geometry.
|
Assessment Rating |
Verification Result (Rating)
A
|