Multivariate orthogonal polynomials on finite groups and their q-analogues
Project/Area Number |
21740032
|
Research Category |
Grant-in-Aid for Young Scientists (B)
|
Allocation Type | Single-year Grants |
Research Field |
Algebra
|
Research Institution | 防衛大学校 |
Principal Investigator |
|
Project Period (FY) |
2009 – 2011
|
Project Status |
Completed (Fiscal Year 2011)
|
Budget Amount *help |
¥4,030,000 (Direct Cost: ¥3,100,000、Indirect Cost: ¥930,000)
Fiscal Year 2011: ¥1,170,000 (Direct Cost: ¥900,000、Indirect Cost: ¥270,000)
Fiscal Year 2010: ¥1,300,000 (Direct Cost: ¥1,000,000、Indirect Cost: ¥300,000)
Fiscal Year 2009: ¥1,560,000 (Direct Cost: ¥1,200,000、Indirect Cost: ¥360,000)
|
Keywords | 表現論 / 代数的組合せ論 / 球関数 / 超幾何関数 / ヘッケ環 / q-超幾何関数 / ヘッケ代数 / ゲルファントペア / 半正規表現 / 多変数直交多項式 / シュバレー群 / 代数統計学 / 帯球関数 / 直交多項式 / 対称関数 / 代数群 / 代数的統計学 |
Research Abstract |
In this study, I dealt with the special functions arising from finite groups or their q-analogues. As results, I obtained the complete description of the spherical functions of a certain Gelfand pair which is generalization of the Gelfand pair(S_2n, H_n), a necessary and sufficient condition of orthogonal properties of multivariate Krawtchouk polynomials, and a formulae of the character of the symmetric groups. Furthermore I applied these results on finite homogenous spaces as stochastic spaces and obtained a generalization of classical Frobenius-Schur theorem.
|
Report
(4 results)
Research Products
(25 results)