Arithmetic study of modular forms belonging to the Maass space
Project/Area Number |
21840036
|
Research Category |
Grant-in-Aid for Research Activity Start-up
|
Allocation Type | Single-year Grants |
Research Field |
Algebra
|
Research Institution | The University of Tokushima |
Principal Investigator |
YOSHINORI Mizuno The University of Tokushima, 大学院・ソシオテクノサイエンス研究部, 准教授 (30546388)
|
Project Period (FY) |
2009 – 2010
|
Project Status |
Completed (Fiscal Year 2010)
|
Budget Amount *help |
¥1,911,000 (Direct Cost: ¥1,470,000、Indirect Cost: ¥441,000)
Fiscal Year 2010: ¥884,000 (Direct Cost: ¥680,000、Indirect Cost: ¥204,000)
Fiscal Year 2009: ¥1,027,000 (Direct Cost: ¥790,000、Indirect Cost: ¥237,000)
|
Keywords | アイゼンシュタイン級数 / ケッヒャー・マース級数 / カトック・サルナック対応 / フーリエ係数 / 類数 / マース空間 / モジュラー形式 / ジーゲル・アイゼンシュタイン級数 / マース形式 / テータリフト / 二次形式 / 明示公式 / 合同 |
Research Abstract |
We determined a proportional constant which appeares in three dimensional analogue of the Katok-Sarnak type formula. We studied p-adic Hermitian-Eisenstein series of low weight by using Hecke's convergent factor. We expressed average values of Eisenstein series over CM points on n-dimensional hyperbolic space in terms of a Dirichlet series whose coefficients are the number of the solutions of quadratic congruences. We gave a good definition of Koecher-Maass series for indefinite Fourier coefficients of real analytic Siegel-Eisenstein series of degree 2 and weight 2. We then proved a meromorphic continuation and a functional equation of the Koecher-Maass series.
|
Report
(3 results)
Research Products
(13 results)