Generation of new three-dimensional structure of permanent magnet motors using topology optimization
Project/Area Number |
21H01301
|
Research Category |
Grant-in-Aid for Scientific Research (B)
|
Allocation Type | Single-year Grants |
Section | 一般 |
Review Section |
Basic Section 21010:Power engineering-related
|
Research Institution | Hokkaido University |
Principal Investigator |
五十嵐 一 北海道大学, 情報科学研究院, 教授 (90212737)
|
Project Period (FY) |
2021-04-01 – 2024-03-31
|
Project Status |
Granted (Fiscal Year 2023)
|
Budget Amount *help |
¥17,160,000 (Direct Cost: ¥13,200,000、Indirect Cost: ¥3,960,000)
Fiscal Year 2023: ¥4,550,000 (Direct Cost: ¥3,500,000、Indirect Cost: ¥1,050,000)
Fiscal Year 2022: ¥7,280,000 (Direct Cost: ¥5,600,000、Indirect Cost: ¥1,680,000)
Fiscal Year 2021: ¥5,330,000 (Direct Cost: ¥4,100,000、Indirect Cost: ¥1,230,000)
|
Keywords | トポロジー最適化 / 最適設計 / 機械学習 / 深層学習 / 永久磁石モータ / 遺伝的アルゴリズム |
Outline of Research at the Start |
本研究では,鉄心形状および永久磁石形状および配向を,モータ断面内のみならず,モータ軸方向にも変化させて最適構造を探索する3次元トポロジー最適化を実現する.本研究により,たとえば軸方向に回転子が磁石埋め込み型から表面磁石型に変化するような,全く新しいモータ3次元構造を獲得する.本手法の確立により,モータ性能の飛躍的向上を目指す.さらに深層学習による3次元トポロジー最適化の高速化を実現する.
|
Outline of Annual Research Achievements |
トポロジー最適化は,寸法や位置などの形状パラメータを事前に設定して最適化するパラメータ最適化とは異なり,穴の生成・消滅を含めて自由に物体を変形して,最適形状を探査する.本研究では,永久磁石モータの最適設計法を大きく拡張し,鉄心のみならず永久磁石の形状と配向を自由変化させるとともに,モータ軸方向への構造変化を包含する3次元トポロジー最適化を実現する.本研究により,電気自動車などに使用される薄型モータの性能向上を実現とするとともに,たとえば軸方向に回転子が磁石埋め込み型から表面磁石型に変化するような,全く新しいモータ3次元構造の獲得と,それによるモータ性能の飛躍的向上を目指す.さらに本最適化法を設計現場で活用可能にするため,3次元深層学習による高速化を実現する. 本年度は,上記目的のために次の研究を実施した.(i)永久磁石モータを回転軸方向に数層に分け,それぞれの層で最適な断面形状を求める2.5次元のトポロジー最適化を実現した.これにより,高い平均トルクと極めて低いトルクリプルを持つ新しい永久磁石モータを見出すことができた. (ii)極数やスロット数,永久磁石配置・構造などの大域構造と,フラックスバリアや固定子ティースなどの局所構造を同時に最適化するために,モンテカルロ木探索を用いた最適設計法を開発した.本法により,モータの大域構造と局所構造の同時最適化が実現できることを数値解析により実証した. (iii)永久磁石モータのトポロジー最適化を高速化するために,モータ断面の画像から電流-トルク特性と電流-磁束特性を推定するための深層学習器を開発した.深層学習によるトルク特性の高速な予測により,トポロジー最適化を高速化できた.
|
Current Status of Research Progress |
Current Status of Research Progress
1: Research has progressed more than it was originally planned.
Reason
当初の目標としていた,断面構造のモータの軸方向への変化を考慮したトポロジー最適化を実現することができた.このように回転子断面形状が軸方向に変化することにより,平均トルクを保ちつつ,トルクリプル(トルク変動)を最小化できることを明らかにした.さらに,モンテカルロ木探索を用いることにより,極数やスロット数,永久磁石配置などのモータの基本構造と,フラックスバリアや永久磁石などの部品の形状を同時に最適化できることを示した.この技術を用いることで,モータの自動設計の実現が期待できる.さらに,永久モータの最適設計を高速化するための新しい深層学習についても,研究が大きく進展した.
|
Strategy for Future Research Activity |
今後,つぎのような研究を行う. (i)段スキューがある永久磁石モータを考え,その断面の磁気回路のトポロジーと,スキュー角を同時に最適化する方法を開発する.このためにすでに開発済みのパラメータ・トポロジーハイブリッド最適化手法を適用する. (ii) 永久磁石モータの多目的最適化を行うためのモンテカルロ木探索法を開発する.モンテカルロ木探索ではそれぞれのノードにスコアを付ける必要があるため,パレート解の数に従ってスコアを付ける方法を検討する.本研究により,複数の目的関数からなる多目的最適化についても,モンテカルロ木探索を適用できるようになる. (iii)変分オートエンコーダを用いた永久磁石モータのトポロジー最適化法を開発する.従来提案されている変分オートエンコーダには,パラメータ最適化過程で得られたデータが教示されてきたが,本研究ではトポロジー最適化過程で得たデータを教示する.これにより多様な磁気トポロジーの永久磁石モータを生成でき,それらから最適なモータを得ることができる. (iv)アーバン・エア・モビリティ用の表面磁石モータのトポロジー最適化を行う.
|
Report
(2 results)
Research Products
(31 results)