Project/Area Number |
21H01356
|
Research Category |
Grant-in-Aid for Scientific Research (B)
|
Allocation Type | Single-year Grants |
Section | 一般 |
Review Section |
Basic Section 21050:Electric and electronic materials-related
|
Research Institution | Hokkaido University |
Principal Investigator |
Hiura Satoshi 北海道大学, 情報科学研究院, 准教授 (30799680)
|
Project Period (FY) |
2021-04-01 – 2024-03-31
|
Project Status |
Completed (Fiscal Year 2023)
|
Budget Amount *help |
¥17,940,000 (Direct Cost: ¥13,800,000、Indirect Cost: ¥4,140,000)
Fiscal Year 2023: ¥2,210,000 (Direct Cost: ¥1,700,000、Indirect Cost: ¥510,000)
Fiscal Year 2022: ¥3,770,000 (Direct Cost: ¥2,900,000、Indirect Cost: ¥870,000)
Fiscal Year 2021: ¥11,960,000 (Direct Cost: ¥9,200,000、Indirect Cost: ¥2,760,000)
|
Keywords | スピン光デバイス / 半導体量子ドット / スピン増幅 / 希薄窒化物半導体 / 光スピントロニクス / 希薄窒化ガリウムヒ素 / スピンダイナミクス / スピン受光ダイオード / スピン輸送 / 超格子 / 半導体光デバイス |
Outline of Research at the Start |
人工知能やビッグデータを駆使する高度情報化社会の持続的発展に向けて、電子スピンによる超低消費電力の情報処理・記憶と熱損失がない光による情報伝送が有効である。スピン情報の光変換には半導体が必須であるが、半導体ではスピン情報が容易に失われ、室温で高効率に動作するスピン機能半導体光デバイスは実現できていない。本研究では、室温で電子のスピン偏極情報を増幅できる希薄窒化物半導体を用いて、スピン生成・スピン輸送・光スピン変換の機能を高度に統合した実用光スピントロニクスデバイスを開発する。
|
Outline of Final Research Achievements |
I have developed quantum dot optically active layers and superlattice spin transport layers equipped with an amplification function of electron spin polarization unique to dilute nitride semiconductor GaNAs. The effects of GaNAs thickness on circularly polarized light emission and electron spin transport properties were clarified in terms of spin dynamics. In addition, by using the tunnel-coupled structure of GaNAs quantum wells and InGaAs quantum dots as the active layer, I have demonstrated the principle of spin-amplified light-emitting diodes that can amplify and recover the electron spin polarization that is unavoidably lost when high voltages are applied, which is necessary for high-speed operation of optical devices. I have also developed spin photodiodes utilizing InAs quantum dots or GaNAs as spin-filtering layers and evaluated their circularly polarized light detection characteristics.
|
Academic Significance and Societal Importance of the Research Achievements |
室温で伝導電子のスピン偏極を発光中および輸送中に高めることのできる光学活性層と電子スピン輸送層の開発は、スピン緩和が避けられない非磁性半導体において電子のスピン偏極を室温で高効率に増幅できる革新的なスピン技術を創出し、半導体光スピントロニクスのパラダイムシフトにつながることが期待できる。また、室温で高効率に動作する半導体光スピン変換素子の開発は、電子スピンを情報キャリアに用いるスピントロニクスにおいて、不揮発性スピンメモリMRAMの直接光配線を実現するための技術基盤の構築につながるとともに、超低消費電力のスピン情報光インターコネクションの実現に向けた実用的な技術開発を加速することが期待される。
|