Project/Area Number |
21H01362
|
Research Category |
Grant-in-Aid for Scientific Research (B)
|
Allocation Type | Single-year Grants |
Section | 一般 |
Review Section |
Basic Section 21050:Electric and electronic materials-related
|
Research Institution | Nagaoka University of Technology |
Principal Investigator |
Unuma Takeya 長岡技術科学大学, 工学研究科, 准教授 (20456693)
|
Co-Investigator(Kenkyū-buntansha) |
秋山 英文 東京大学, 物性研究所, 教授 (40251491)
玉山 泰宏 長岡技術科学大学, 工学研究科, 准教授 (50707312)
|
Project Period (FY) |
2021-04-01 – 2024-03-31
|
Project Status |
Completed (Fiscal Year 2023)
|
Budget Amount *help |
¥18,070,000 (Direct Cost: ¥13,900,000、Indirect Cost: ¥4,170,000)
Fiscal Year 2023: ¥2,470,000 (Direct Cost: ¥1,900,000、Indirect Cost: ¥570,000)
Fiscal Year 2022: ¥2,730,000 (Direct Cost: ¥2,100,000、Indirect Cost: ¥630,000)
Fiscal Year 2021: ¥12,870,000 (Direct Cost: ¥9,900,000、Indirect Cost: ¥2,970,000)
|
Keywords | 半導体超格子 / テラヘルツ放射 / 光学利得 / 量子ビート / トンネル効果 / 非平衡系 / 半導体物性 / 超格子 / テラヘルツ/赤外材料・素子 / テラヘルツ |
Outline of Research at the Start |
半導体超格子は,異なる半導体材料をナノメートル級の厚さで交互かつ周期的に積層した人工結晶であり,極低温に限らず室温でもテラヘルツ電磁波の増幅効果(利得)を有する。しかし従来の理論では,このテラヘルツ利得は複数の電子が独立して運動するという描像に基づいて理解されている。本研究では,応用上重要な電子密度を高めた状況において,電子同士が作用し合う現象(動的電子相関)がテラヘルツ利得に及ぼす影響を解明・制御することを目指す。
|
Outline of Final Research Achievements |
We investigated how the collective oscillation phase and Coulomb interaction of dynamically correlated electrons during Bloch oscillations affect their terahertz gain in biased semiconductor superlattices. We found that the interaction occurs mainly via field screening and phonons and does not change the initial phase of Bloch oscillations, which is essential for terahertz gain. Furthermore, we succeeded in controlling the initial phase of Bloch oscillations with the probability of interminiband tunneling. By developing a generalized framework for the step response of electrons to bias voltage, we provided a new physical understanding of the observed initial phase.
|
Academic Significance and Societal Importance of the Research Achievements |
半導体超格子は,異なる半導体材料をナノメートル級の厚さで周期的に積層した人工結晶であり,テラヘルツ領域において小型固体光源の課題となっている室温動作と周波数可変動作を両立させうる利得媒質である。従来,このテラヘルツ利得は複数の電子が独立して運動するという描像に基づいて理解されてきたが,本研究では,利得の応用に即した高い電子密度で重要になる電子同士が作用し合う現象(動的電子相関)に着目した。その物理的理解と制御方法を新たに提示できた。
|