• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Elucidating the deformation of bedrock caused by hydromechanical processes

Research Project

Project/Area Number 21H01593
Research Category

Grant-in-Aid for Scientific Research (B)

Allocation TypeSingle-year Grants
Section一般
Review Section Basic Section 25030:Disaster prevention engineering-related
Research InstitutionShimane University

Principal Investigator

Kogure Tetsuya  島根大学, 学術研究院環境システム科学系, 准教授 (70534006)

Co-Investigator(Kenkyū-buntansha) 土井 一生  京都大学, 防災研究所, 准教授 (00572976)
小松 満  岡山大学, 環境生命自然科学学域, 教授 (50325081)
Project Period (FY) 2021-04-01 – 2024-03-31
Project Status Completed (Fiscal Year 2023)
Budget Amount *help
¥18,070,000 (Direct Cost: ¥13,900,000、Indirect Cost: ¥4,170,000)
Fiscal Year 2023: ¥2,080,000 (Direct Cost: ¥1,600,000、Indirect Cost: ¥480,000)
Fiscal Year 2022: ¥2,080,000 (Direct Cost: ¥1,600,000、Indirect Cost: ¥480,000)
Fiscal Year 2021: ¥13,910,000 (Direct Cost: ¥10,700,000、Indirect Cost: ¥3,210,000)
Keywords地下水挙動 / ひずみ変化 / 斜面安定性 / 深層崩壊 / 割れ目 / 分布式光ファイバセンシング / ケーブル加熱法 / 温度変化 / 地下水 / 地下水流検知 / 光ファイバ / 微動探査 / セメント試料 / 加熱試験
Outline of Research at the Start

基盤岩内部の亀裂の発達やそれに伴う微少な変形の検知は,深層崩壊のみならず,斜面地形の発達機構の解明・理解に役立つ。本研究では,深層崩壊の発生予測に向けた一歩として平常時の基盤岩の変形に関する基礎データの蓄積を目的とし,基盤岩の変形位置と地下水流の位置を同時計測可能な分布式光ファイバセンシングにより,地表から基盤岩の変形を連続的に直接測定する。研究期間の前半で室内実験により計測方法を確立し,期間の後半で実際に野外計測する。そして,これまで未計測の深さで基盤岩内部の地下水流と変形との対応関係を明らかにし,基盤岩内の水文力学的挙動に関する学術の進歩へ貢献する。

Outline of Final Research Achievements

This study investigated the relation between groundwater migration and bedrock deformation with drilling a 50 m-deep borehole to understand the occurrence mechanisms of deep-seated landslides which could be induced by extremely intense rainfall. Distributed fiber optic sensing, which detect the changes in temperature and strain, was adopted for the monitoring of water migration and bedrock deformation: spatial resolution along the borehole was 5 cm. Changes in temperature and strain obtained by cables allow us to understand water migration and bedrock deformation, respectively. Active-heating method, in which a metallic wire in a cable is heated, revealed water level because it shows a temperature distribution along the borehole, where the degree of temperature increase is lower around water due to thermal absorption by water. The depths of strain accumulation almost coincident with water depths, indicating groundwater migration through cracks might induce bedrock deformation.

Academic Significance and Societal Importance of the Research Achievements

近年,地球温暖化に伴い短時間で非常に強い降雨現象が増えている。そうした降雨により通常の斜面崩壊より規模が大きい深層崩壊が発生する可能性が高まる。本研究では,深層崩壊が発生する地下数十メールの深さでは日常的にどのような現象や変化が起きているか調べるため,深層崩壊の原因となる地下水の動きと地盤変形との関係を調べた。その結果,地下水の動きが活発な場所(恐らく岩盤の割れ目が多い場所)で地盤変形が生じやすいことを確認した。この成果は,地下水が流動しやすい場所をボーリング孔掘削により把握することで,将来の深層崩壊発生リスクすなわち斜面安定性を評価できる可能性を示す。

Report

(4 results)
  • 2023 Annual Research Report   Final Research Report ( PDF )
  • 2022 Annual Research Report
  • 2021 Annual Research Report
  • Research Products

    (5 results)

All 2025 2024 2022

All Journal Article (2 results) (of which Peer Reviewed: 2 results) Presentation (3 results) (of which Int'l Joint Research: 2 results)

  • [Journal Article] Recent advances in fibre-optic-based slope reinforcement monitoring: a review of current status and prospects2025

    • Author(s)
      Acharya, A. and Kogure, T.
    • Journal Title

      Journal of Rock Mechanics and Geotechnical Engineering

      Volume: -

    • Related Report
      2023 Annual Research Report
    • Peer Reviewed
  • [Journal Article] Application of novel distributed fibre-optic sensing for slope deformation monitoring: a comprehensive review2022

    • Author(s)
      Acharya A.、Kogure T.
    • Journal Title

      International Journal of Environmental Science and Technology

      Volume: - Issue: 7 Pages: 8217-8240

    • DOI

      10.1007/s13762-022-04697-5

    • Related Report
      2022 Annual Research Report
    • Peer Reviewed
  • [Presentation] Distributed temperature sensing for seepage detection using Rayleigh-based optical frequency-domain reflectometry: from laboratory feasibility study to field investigation2024

    • Author(s)
      Ashis Acharya, Daiki Tanimura, Chao Zhang, Fumihiko Ito, Toshihiro Sakaki, Mitsuru Komatsu, Issei Doi, and Tetsuya Kogure
    • Organizer
      14th Asian Regional Conference of IAEG
    • Related Report
      2023 Annual Research Report
    • Int'l Joint Research
  • [Presentation] Experimental demonstration of temperature variation sensing employing optical frequency-domain reflectometry based on Rayleigh backscattering aiming seepage flow monitoring in slopes.2022

    • Author(s)
      Acharya, A., Tanimura, D., Zhang, C., Ito, F., Sakaki, T., Komatsu, M., Doi, I., Kogure, T.
    • Organizer
      Japanese Geomorphological Union 2022 Fall Meeting
    • Related Report
      2022 Annual Research Report
  • [Presentation] An experimental analysis to assess temperature distribution using Rayleigh-based optical frequency-domain reflectometry: a step towards groundwater flow monitoring in vulnerable slopes.2022

    • Author(s)
      Acharya, A., Tanimura, D., Zhang, C., Ito, F., Sakaki, T., Komatsu, M., Doi, I., Kogure, T.
    • Organizer
      35th Himalaya-Karakorum-Tibet Workshop
    • Related Report
      2022 Annual Research Report
    • Int'l Joint Research

URL: 

Published: 2021-04-28   Modified: 2025-01-30  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi