Project/Area Number |
21H01610
|
Research Category |
Grant-in-Aid for Scientific Research (B)
|
Allocation Type | Single-year Grants |
Section | 一般 |
Review Section |
Basic Section 26020:Inorganic materials and properties-related
|
Research Institution | Hokkaido University |
Principal Investigator |
|
Co-Investigator(Kenkyū-buntansha) |
藤井 雄太 北海道大学, 工学研究院, 助教 (90982653)
ROSERO CAROLINA 北海道大学, 工学研究院, 助教 (50791381)
|
Project Period (FY) |
2021-04-01 – 2024-03-31
|
Project Status |
Completed (Fiscal Year 2023)
|
Budget Amount *help |
¥17,420,000 (Direct Cost: ¥13,400,000、Indirect Cost: ¥4,020,000)
Fiscal Year 2023: ¥4,290,000 (Direct Cost: ¥3,300,000、Indirect Cost: ¥990,000)
Fiscal Year 2022: ¥4,290,000 (Direct Cost: ¥3,300,000、Indirect Cost: ¥990,000)
Fiscal Year 2021: ¥8,840,000 (Direct Cost: ¥6,800,000、Indirect Cost: ¥2,040,000)
|
Keywords | 硫化物固体電解質 / 全固体電池 / 液相法 / 液相合成 |
Outline of Research at the Start |
全固体電池用固体電解質として期待されているリチウムイオン伝導性硫化物固体電解質の液相法での合成における「化学」を、結晶構造・熱力学・速度論・結晶成長・界面形成といった観点から総合的に明らかにする。これによって、液相による様々な硫化物固体電解質の反応経路を設計する指針を得る。低温合成に速度論的な制御によって準安定相の合成が可能といった液相法の特徴を生かして、高イオン伝導性を示す新奇結晶相の探索を行う。
|
Outline of Final Research Achievements |
The main objectives of the present study are to elucidate the reactions of precursors and solvents in solution during the liquid-phase synthesis of sulfide-based solid electrolytes, to design reaction pathways for various sulfide solid electrolytes, and to explore novel solid electrolytes.
The structure of the precursor complexes formed during the liquid-phase synthesis was analyzed, and the relationship between their thermal decomposition behavior and the resulting phase was clarified. By using both a suspension process and a dissolution-reprecipitation process, we demonstrated that the particle size of the resulting sulfide solid electrolytes can be controlled. We also showed that by using alcohol as a reaction solvent, oxythiophosphate-based solid electrolytes with oxygen incorporated into their structure were obtained.
|
Academic Significance and Societal Importance of the Research Achievements |
液相法を用いて硫化物系固体電解質を合成する場合に、その前駆体の構造や前駆体の溶解挙動を理解することにより、固相法で合成が困難な結晶祖を合成できること、あるいは、得られた固体電解質の粒径を制御できることを示し、液相法の特徴を活かした硫化物系固体電解質を合成できることを明らかにした。
|