• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Development of innovative management strategy for pharmaceutical continuous manufacturing processes

Research Project

Project/Area Number 21H01704
Research Category

Grant-in-Aid for Scientific Research (B)

Allocation TypeSingle-year Grants
Section一般
Review Section Basic Section 27020:Chemical reaction and process system engineering-related
Research InstitutionKyoto University

Principal Investigator

Kano Manabu  京都大学, 情報学研究科, 教授 (30263114)

Co-Investigator(Kenkyū-buntansha) 金 尚弘  東京農工大学, 工学(系)研究科(研究院), 准教授 (60735504)
杉山 弘和  東京大学, 大学院工学系研究科(工学部), 教授 (70701340)
Project Period (FY) 2021-04-01 – 2024-03-31
Project Status Completed (Fiscal Year 2023)
Budget Amount *help
¥16,900,000 (Direct Cost: ¥13,000,000、Indirect Cost: ¥3,900,000)
Fiscal Year 2023: ¥5,070,000 (Direct Cost: ¥3,900,000、Indirect Cost: ¥1,170,000)
Fiscal Year 2022: ¥5,720,000 (Direct Cost: ¥4,400,000、Indirect Cost: ¥1,320,000)
Fiscal Year 2021: ¥6,110,000 (Direct Cost: ¥4,700,000、Indirect Cost: ¥1,410,000)
Keywords医薬品 / 連続生産 / 管理戦略 / プロセス制御 / 異常検出 / 製剤 / デザインスペース / モデル / 制御 / デジタルツイン / プロセス設計 / モデリング / デインスペース / 機械学習
Outline of Research at the Start

製薬産業では,確実な製品品質保証を必須条件としつつ,需要に応じた柔軟な生産と生産性向上を実現するために,バッチ生産から連続生産への移行が進められている.本研究では,医薬品製造(特に固形製剤)において連続生産が持つ能力を最大限に引き出すために,最高レベルの品質と生産性を実現できる最適な管理戦略について検討し,その実現に必要なモデル構築・制御・監視手法等を開発する.具体的には,連続生産の能力を活かしきるデザインスペースの構築,全体最適化を達成する制御技術および安全強化学習技術の開発,確実な品質保証を約束する異常検出技術の開発,を遂行し,革新的管理戦略の構築と検証を実施する.

Outline of Final Research Achievements

The goal of this research is to develop innovative control strategies that maximize the quality and productivity of pharmaceutical continuous manufacturing, as well as the methodologies and technologies needed to implement these strategies. We have constructed models for powder feed and mixing processes and developed models using a superstructure to comprehensively represent various equipment configurations. Additionally, we have developed a "greedy design space" approach that maximizes the use of quality-assured operational regions, and a control method that minimizes the risk of deviating from the design space. We have also developed fault detection methods for granulation processes and process selection support tools for solid dosage form manufacturing.

Academic Significance and Societal Importance of the Research Achievements

医薬品を低価かつ安定に供給するために,医薬品製造技術の革新が求められている.本研究では,近年採用が進んでいる連続生産を対象として,原料供給,混合,造粒,打錠など主要工程のモデルを構築するとともに,品質制御手法や異常検出手法を含む管理戦略を新たに提案した.これらの成果は,将来の医薬品製造技術の中核技術として,革新的管理戦略構築の基盤となるものである.

Report

(4 results)
  • 2023 Annual Research Report   Final Research Report ( PDF )
  • 2022 Annual Research Report
  • 2021 Annual Research Report
  • Research Products

    (16 results)

All 2024 2023 2022

All Journal Article (3 results) (of which Peer Reviewed: 3 results,  Open Access: 1 results) Presentation (12 results) (of which Int'l Joint Research: 6 results) Book (1 results)

  • [Journal Article] Feed factor profile prediction model for two-component mixed powder in the twin-screw feeder2024

    • Author(s)
      Kobayashi Yuki、Kim Sanghong、Nagato Takuya、Oishi Takuya、Kano Manabu
    • Journal Title

      International Journal of Pharmaceutics: X

      Volume: 7 Pages: 100242-100242

    • DOI

      10.1016/j.ijpx.2024.100242

    • Related Report
      2023 Annual Research Report
    • Peer Reviewed / Open Access
  • [Journal Article] Greedy design space construction based on regression and latent space extraction for pharmaceutical development2023

    • Author(s)
      Tanabe Shuichi、Muraki Tatsuya、Yaginuma Keita、Kim Sanghong、Kano Manabu
    • Journal Title

      International Journal of Pharmaceutics

      Volume: 642 Pages: 123178-123178

    • DOI

      10.1016/j.ijpharm.2023.123178

    • Related Report
      2023 Annual Research Report
    • Peer Reviewed
  • [Journal Article] Surrogate modeling of dissolution behavior toward efficient design of tablet manufacturing processes2023

    • Author(s)
      Kensaku Matsunami, Tomohiro Miura, Keita Yaginuma, Shuichi Tanabe, Sara Badr, Hirokazu Sugiyama
    • Journal Title

      Computers & Chemical Engineering

      Volume: 171 Pages: 108141-108141

    • DOI

      10.1016/j.compchemeng.2023.108141

    • Related Report
      2022 Annual Research Report
    • Peer Reviewed
  • [Presentation] Setpoint Determination Method for Pharmaceutical Continuous Manufacturing: Proactive-RTD-based Approach2023

    • Author(s)
      Pasindu Herath Pathirannahalage; Ayumu Nabetani; Shota Kato; Kanta Sato; Keita Yaginuma; Shuichi Tanabe; Manabu Kano
    • Organizer
      IEEE Conference on Control Technology and Applications (CCTA)
    • Related Report
      2023 Annual Research Report
    • Int'l Joint Research
  • [Presentation] Development of Feed Factor Prediction Models for Two-Component Mixed Powder2023

    • Author(s)
      Yuki Kobayashi, Sanghong Kim, Takuya Nagato, Kazuhiro Uchida, Takuya Oishi, Manabu Kano
    • Organizer
      IFAC World Congress
    • Related Report
      2023 Annual Research Report
    • Int'l Joint Research
  • [Presentation] Two-Component Powder Feeding Process with Twin-Screw Feeder Can be Modeled without Information of Powder Characteristics2023

    • Author(s)
      Yuki Kobayashi, Sanghong Kim, Takuya Nagato, Takuya Oishi, Manabu Kano
    • Organizer
      AIChE Annual Meeting
    • Related Report
      2023 Annual Research Report
    • Int'l Joint Research
  • [Presentation] NIRを用いたAPI濃度予測における適切なデータ取得条件の解明2023

    • Author(s)
      福岡憲彦,大石卓弥,長門琢也,金尚弘,外輪健一郎
    • Organizer
      化学工学会第54回秋季大会
    • Related Report
      2023 Annual Research Report
  • [Presentation] 固形製剤連続生産プロセスにおける混合・打錠条件が中間・最終製品へ与える影響の解明2023

    • Author(s)
      小林雄貴,金尚弘,長門琢也,大石卓弥,加納学
    • Organizer
      化学工学会第54回秋季大会
    • Related Report
      2023 Annual Research Report
  • [Presentation] 固形製剤連続生産プロセスにおける処方および運転条件と製品品質の関係のモデリング2023

    • Author(s)
      小林雄貴,金尚弘,長門琢也,大石卓弥,加納学
    • Organizer
      第66回自動制御連合講演会実行委員会
    • Related Report
      2023 Annual Research Report
  • [Presentation] NIRスペクトルを入力とするPLSモデルの予測誤差を小さくするモデル構築用データの取得条件についての基礎的検討2023

    • Author(s)
      福岡憲彦,外輪健一郎,金尚弘
    • Organizer
      化学工学会福井大会
    • Related Report
      2023 Annual Research Report
  • [Presentation] プロセスとして見た錠剤連続生産2023

    • Author(s)
      杉山弘和
    • Organizer
      粉体工学会第58回夏期シンポジウム
    • Related Report
      2023 Annual Research Report
  • [Presentation] 固形製剤連続生産 プロセスシステム工学の視点から2023

    • Author(s)
      杉山弘和
    • Organizer
      立命館大学創剤・製剤技術研究コンソーシアム 第3回研究会
    • Related Report
      2023 Annual Research Report
  • [Presentation] Framework for designing solid drug product manufacturing processes based on economic and quality assessment2022

    • Author(s)
      Kensaku Matsunami, Sara Badr, Hirokazu Sugiyama
    • Organizer
      The 14th International Symposium on Process Systems Engineering (PSE 2021+)
    • Related Report
      2022 Annual Research Report
    • Int'l Joint Research
  • [Presentation] Prediction of API Concentration Using NIRS Measured Off-line and In-line Instruments2022

    • Author(s)
      Norihiko Fukuoka, Sanghong Kim, Takuya Oishi, Ken-Ichiro Sotowa
    • Organizer
      The 14th International Symposium on Process Systems Engineering (PSE 2021+)
    • Related Report
      2022 Annual Research Report
    • Int'l Joint Research
  • [Presentation] Setpoint Determination Method for Control of Pharmaceutical Critical Material Attributes in Two Consecutive Processes2022

    • Author(s)
      Ayumu Nabetani, Shota Kato, Manabu Kano
    • Organizer
      10th Asian Symposium on Process Systems Engineering (PSE Asia 2022)
    • Related Report
      2022 Annual Research Report
    • Int'l Joint Research
  • [Book] "Design Framework and Tools for Solid Drug Product Manufacturing Processes" in "Optimization of Pharmaceutical Processes"2022

    • Author(s)
      Kensaku Matsunami, Sara Badr, Hirokazu Sugiyama
    • Total Pages
      435
    • Publisher
      Springer
    • ISBN
      9783030909246
    • Related Report
      2021 Annual Research Report

URL: 

Published: 2021-04-28   Modified: 2025-01-30  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi