Project/Area Number |
21H01710
|
Research Category |
Grant-in-Aid for Scientific Research (B)
|
Allocation Type | Single-year Grants |
Section | 一般 |
Review Section |
Basic Section 27030:Catalyst and resource chemical process-related
|
Research Institution | Saitama University |
Principal Investigator |
|
Project Period (FY) |
2021-04-01 – 2024-03-31
|
Project Status |
Completed (Fiscal Year 2023)
|
Budget Amount *help |
¥17,290,000 (Direct Cost: ¥13,300,000、Indirect Cost: ¥3,990,000)
Fiscal Year 2023: ¥3,900,000 (Direct Cost: ¥3,000,000、Indirect Cost: ¥900,000)
Fiscal Year 2022: ¥9,100,000 (Direct Cost: ¥7,000,000、Indirect Cost: ¥2,100,000)
Fiscal Year 2021: ¥4,290,000 (Direct Cost: ¥3,300,000、Indirect Cost: ¥990,000)
|
Keywords | ペロブスカイト / ナノ材料 / 電極触媒 / 酸素発生反応 / アルコール / 電解酸化 / 前駆体集積法 / 複合酸化物 / 水の酸化 |
Outline of Research at the Start |
ペロブスカイト型複合酸化物(ABO3)は高機能触媒としての利用が期待されているが,高比表面積化(=ナノサイズ化)が難しく,その応用の障壁になっている。本研究ではナノカーボン表面に金属前駆体を集積する技術(前駆体集積法)に基づき,「高表面積ペロブスカイトナノ物質の汎用的合成法の確立と生成機構の解明」を目指す。合成したペロブスカイトナノ物質群を電極触媒に用いて,電解による高効率な物質転換プロセスを開拓する。
|
Outline of Final Research Achievements |
In this study, the synthesis and application of perovskite nanostructures using the precursor accumulation method were investigated. A technique to uniformly accumulate precursors on nanocarbons was developed, and it was found that this technique can synthesize various perovskites with high surface areas. Depending on the morphology of the nanocarbon used, the nanostructure of the perovskites could be controlled, resulting in nanoparticles or nanofibers. Analysis of the mechanism of the precursor accumulation method revealed that the accumulation of heterogeneous metal precursors at the nanolevel on the carbon surface drives perovskite formation. Additionally, the electrocatalytic activity of NiFe(OH)x/C was evaluated, and it was found that in this composite hydroxide, Ni and Fe are closely positioned at the atomic level, resulting in high oxygen evolution reaction activity.
|
Academic Significance and Societal Importance of the Research Achievements |
本研究は,前駆体集積法を用いることで高表面積のペロブスカイトナノ構造体を効率的に合成できる新手法を確立した点に学術的意義がある。異種金属前駆体が炭素表面においてナノレベルで均一集積し,このナノ混合状態がペロブスカイト生成を促進するメカニズムを解明したことも成果として強調したい。また,原子レベルで分散した異種金属種(NiとFe)が高い酸素発生反応活性を示すことを実証し,これは電極触媒化学分野に対する新たな知見となる。本研究は,ナノペロブスカイトの簡便な合成法,およびグリーン水素の大量生産に寄与する可能性があり,社会的な波及効果が期待される。
|