Project/Area Number |
21H01713
|
Research Category |
Grant-in-Aid for Scientific Research (B)
|
Allocation Type | Single-year Grants |
Section | 一般 |
Review Section |
Basic Section 27030:Catalyst and resource chemical process-related
|
Research Institution | Tokyo Institute of Technology |
Principal Investigator |
Kamata Keigo 東京工業大学, 科学技術創成研究院, 教授 (40451801)
|
Project Period (FY) |
2021-04-01 – 2024-03-31
|
Project Status |
Completed (Fiscal Year 2023)
|
Budget Amount *help |
¥17,290,000 (Direct Cost: ¥13,300,000、Indirect Cost: ¥3,990,000)
Fiscal Year 2023: ¥5,460,000 (Direct Cost: ¥4,200,000、Indirect Cost: ¥1,260,000)
Fiscal Year 2022: ¥5,460,000 (Direct Cost: ¥4,200,000、Indirect Cost: ¥1,260,000)
Fiscal Year 2021: ¥6,370,000 (Direct Cost: ¥4,900,000、Indirect Cost: ¥1,470,000)
|
Keywords | 触媒 / マンガン酸化物 / 酸化反応 / 無機合成 / ナノ粒子 / メソポーラス / チャネル構造 / OMS-1 / 酸化 / ポーラス / マンガン / 酸化物 |
Outline of Research at the Start |
本申請研究では、独自に開発した層状マンガン酸化物前駆体の低温での結晶化手法(前駆体結晶化法)に着目し、構造(結晶・チャネル・細孔)を制御したマンガン酸化物ナノ粒子触媒を合成する。優れた酸化力、隣接する酸塩基点との共同作用、特殊ナノ空間での反応促進を利用した、従来法で合成したマンガン酸化物では達成し得ない高難度あるいは新しい触媒反応系の開発を目的とする。
|
Outline of Final Research Achievements |
In this research, we focused on the low-temperature solid-to-solid phase transition (denoted as " crystallization of precursor method") of low-crystallinity layered manganese oxide precursors to control the crystal, channel, and porous structures of manganese oxide nanoparticle catalysts. Mesoporous OMS-1 and β-type manganese dioxide nanoparticles were synthesized by controlling the synthesis conditions of the precursors, and we applied them to the aerobic oxidation of various substrates using only molecular oxygen as the oxidant through their excellent oxidizing power and synergistic effect with acid-base properties. We have successfully developed the aerobic oxidation of sulfides and the one-pot oxidative conversion of aromatic alcohols to the corresponding nitriles and amides.
|
Academic Significance and Societal Importance of the Research Achievements |
本研究では、極めてシンプルな手法で新しい概念に基づく高活性な多機能マンガン酸化物触媒の合成と開発を達成した。これらは熱安定性の高い無機固体材料であるため、液相酸化反応だけでなく揮発性有機化合物の酸化浄化・電気化学的なエネルギー変換などの幅広い反応に対しても21世紀にふさわしい新しい省資源・省エネルギープロセスの一端を担うことが期待される。無機合成・有機合成と理論化学的アプローチとの融合により新触媒の創出が期待され、触媒設計の方法論を提供する点で学術的な波及効果も大きいと考えられる。
|