Project/Area Number |
21H01794
|
Research Category |
Grant-in-Aid for Scientific Research (B)
|
Allocation Type | Single-year Grants |
Section | 一般 |
Review Section |
Basic Section 29010:Applied physical properties-related
|
Research Institution | Institute of Physical and Chemical Research (2023) The University of Tokyo (2021-2022) |
Principal Investigator |
Yokouchi Tomoyuki 国立研究開発法人理化学研究所, 創発物性科学研究センター, ユニットリーダー (20823389)
|
Project Period (FY) |
2021-04-01 – 2024-03-31
|
Project Status |
Completed (Fiscal Year 2023)
|
Budget Amount *help |
¥17,550,000 (Direct Cost: ¥13,500,000、Indirect Cost: ¥4,050,000)
Fiscal Year 2023: ¥4,030,000 (Direct Cost: ¥3,100,000、Indirect Cost: ¥930,000)
Fiscal Year 2022: ¥5,850,000 (Direct Cost: ¥4,500,000、Indirect Cost: ¥1,350,000)
Fiscal Year 2021: ¥7,670,000 (Direct Cost: ¥5,900,000、Indirect Cost: ¥1,770,000)
|
Keywords | スキルミオン / ニューロモルフィックデバイス / 非相反伝導現象 / 物理リザバー / リザバーコンピューティング / 電流誘起スピンダイナミクス / ニューロモルフィック / 非線形ダイナミクス / ニューラルネットワーク / スピントロニクス / トポロジー |
Outline of Research at the Start |
近年、人工ニューラルネットワークを用いた機械学習が様々なタスクで高い性能を示すことが明らかになり、学術と経済の両面から重要性が高まっている。一方従来のデバイスでは消費電力や速度の面で課題が多い。その解決のため、物理系における非線形応答を用いるニューロモルフィックデバイスの研究が行われている。本研究では、「スキルミオン」と呼ばれるトポロジカル磁気構造に着目し、その非線形応答の特性を解明するとともに、実際にデバイスを作成し、計算性能を評価する。そして、スキルミオンのもつ物理特性と性能の関係を系統的に調べ、ニューロモルフィックデバイスの高性能化・実用化へむけた新たな指針を得ることを目指す。
|
Outline of Final Research Achievements |
In recent years, the importance of machine learning using artificial neural networks (ANN) has rapidly increased. However, conventional devices used to run ANNs face challenges such as high power consumption. Therefore, research on devices specialized for running ANNs (artificial intelligence devices) has been advancing. Skyrmions, in particular, have garnered attention as a promising candidate. This research focused on the creation and performance evaluation of artificial intelligence devices using skyrmions, aiming to enhance their performance. Specifically, we evaluated the performance of physical reservoir devices using skyrmions and achieved high recognition rates in handwritten digit recognition. Additionally, we observed nonlinear responses in antiferromagnetic materials and Weyl semimetals, exploring their potential applications in neuromorphic devices.
|
Academic Significance and Societal Importance of the Research Achievements |
本研究の社会的意義は、エネルギー効率の高い高性能人工知能の実現につながる可能性がある点である。従来のCPUやGPUは消費電力が大きく、メモリ機能がないため効率が低下する。スキルミオンを用いた人工知能素子は低消費電力で操作可能であり、メモリ効果を持つため計算効率を大幅に向上させる可能性を秘めている。また、スキルミオンの粒子性によりナノスケールで多数のノード形成が容易で、高密度集積回路が実現可能という利点もある。また、本研究で観測した反強磁性体やワイル半金属における非線形応答は、人工知能素子の新たな動作原理として発展してく可能性を秘めている。
|