Project/Area Number |
21H01818
|
Research Category |
Grant-in-Aid for Scientific Research (B)
|
Allocation Type | Single-year Grants |
Section | 一般 |
Review Section |
Basic Section 29020:Thin film/surface and interfacial physical properties-related
|
Research Institution | National Institute for Materials Science |
Principal Investigator |
Ishida Nobuyuki 国立研究開発法人物質・材料研究機構, マテリアル基盤研究センター, 主幹研究員 (10451444)
|
Project Period (FY) |
2021-04-01 – 2024-03-31
|
Project Status |
Completed (Fiscal Year 2023)
|
Budget Amount *help |
¥17,550,000 (Direct Cost: ¥13,500,000、Indirect Cost: ¥4,050,000)
Fiscal Year 2023: ¥3,510,000 (Direct Cost: ¥2,700,000、Indirect Cost: ¥810,000)
Fiscal Year 2022: ¥6,110,000 (Direct Cost: ¥4,700,000、Indirect Cost: ¥1,410,000)
Fiscal Year 2021: ¥7,930,000 (Direct Cost: ¥6,100,000、Indirect Cost: ¥1,830,000)
|
Keywords | ケルビンプローブフォース顕微鏡 / 全固体リチウムイオン電池 / 空間電荷層 / 局所インピーダンス計測 / ケルビンプローブ力顕微鏡 / qPlus sensor / 電位計測 / 固体電解質 / 粒界抵抗 / 界面抵抗 |
Outline of Research at the Start |
全固体リチウムイオン電池はカーボンニュートラルの切り札となる有望な次世代蓄電池技術である。しかし現状では、イオン伝導抵抗が高く、電力密度が低い(大きな電流を取り出せない)ことが実用化の大きな妨げとなっている。この抵抗成分は、電池内のいくつかの界面(正極-固体電解質界面や固体電解質中の結晶粒界)で生じることが知られている。本研究では、先端電位計測技術を駆使して、この界面抵抗の起源の解明を試みる。得られた知見をもとに、界面抵抗が生じるメカニズムを明らかにし、物理・化学的理解に根ざした電池設計指針を獲得することを目指す。
|
Outline of Final Research Achievements |
High ionic resistance at interfaces and grain boundaries is a significant obstacle to the practical use of all-solid-state lithium-ion batteries, a promising next-generation energy storage technology. To reduce ionic resistance, it is crucial to elucidate the origin of interfacial resistance and develop measurement techniques to address it. In this study, we used Kelvin probe force microscopy (KPFM) to precisely measure the space charge layer, which is considered the origin of interfacial resistance. Also, we developed a local impedance measurement technique for assessing single grain boundary resistance based on the KPFM technique.
|
Academic Significance and Societal Importance of the Research Achievements |
本研究で得られた成果は電極-固体電解質界面で生じる空間電荷層に関する新しい知見を提供する。固体のイオン伝導体中で生じる空間電荷層の形成メカニズムは実験的検証が不足していることもあり、その学術的な意義は大きい。また、空間電荷層はイオン伝導の阻害要因と考えられており、全固体電池における界面抵抗の起源解明のための一つの知見を提供する。そのため、全固体電池開発において、界面抵抗低減のための界面設計・構造制御技術開発の一助となり得る。
|