• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Development of ultra-low loss glass and the process for fiberization

Research Project

Project/Area Number 21H01835
Research Category

Grant-in-Aid for Scientific Research (B)

Allocation TypeSingle-year Grants
Section一般
Review Section Basic Section 30020:Optical engineering and photon science-related
Research InstitutionTohoku University (2023)
Hokkaido University (2021-2022)

Principal Investigator

ONO MADOKA  東北大学, 工学研究科, 教授 (20865224)

Co-Investigator(Kenkyū-buntansha) 小原 真司  国立研究開発法人物質・材料研究機構, マテリアル基盤研究センター, グループリーダー (90360833)
藤岡 正弥  北海道大学, 電子科学研究所, 助教 (40637740)
Project Period (FY) 2021-04-01 – 2024-03-31
Project Status Completed (Fiscal Year 2023)
Budget Amount *help
¥18,070,000 (Direct Cost: ¥13,900,000、Indirect Cost: ¥4,170,000)
Fiscal Year 2023: ¥1,560,000 (Direct Cost: ¥1,200,000、Indirect Cost: ¥360,000)
Fiscal Year 2022: ¥2,990,000 (Direct Cost: ¥2,300,000、Indirect Cost: ¥690,000)
Fiscal Year 2021: ¥13,520,000 (Direct Cost: ¥10,400,000、Indirect Cost: ¥3,120,000)
Keywords量子暗号通信 / 光ファイバ / シリカガラス / レイリー散乱 / 超低損失 / 究極透明ガラス / 高温高圧凍結 / 空隙構造 / 構造揺らぎ / トポロジー / ガラス / 圧力 / 光量子通信 / 低光損失 / 高温高圧処理 / 光通信ファイバ / 高温高圧
Outline of Research at the Start

量子暗号通信は通常の光増幅が許されないため、その普及には損失の低い通信経路が不可欠である。安定した通信の実現には有線通信が好ましいが、これを担う光通信ファイバの散乱損失は30年余下げ止まっていた。これに対して申請者は、光通信ファイバのコア部材であるシリカガラスの、原子のない部分の構造(空隙構造)に注目し、圧力を印加してこの空隙を縮小すると、光損失が現行の半分以下に低減できることを見出した。また、計算により更に高圧下で光損失をもっと低減できると予測した。本研究ではこの予測に基づき高温高圧凍結ガラスを合成し、究極の透明ガラスを実証する。更に、ファイバ化が可能な究極透明ガラスの材料創成に挑む。

Outline of Final Research Achievements

The optical loss due to Rayleigh scattering in silica glass is significantly suppressed by hot-compression at the melting temperature. However, the pressure range of prior study had been only up to 0.2 GPa. In this study, the pressure range was extended to 0.98 GPa, and various physical properties such as density, refractive index, high-energy X-ray scattering, thermal conductivity, and expansion coefficient were successfully measured in addition to Rayleigh scattering. As a result, it was found that the density and refractive index monotonically increase with increasing pressure in the high-pressure frozen silica glass, but the structural fluctuation and Rayleigh scattering become minimum values around 0.8 GPa. We expected that the thermal conductivity would increase with homogenization and densification, but in fact it decreased. We also observed some unusual phenomena such as a shift of the minimum value of the thermal expansion coefficient to higher temperatures.

Academic Significance and Societal Importance of the Research Achievements

人工知能とセンシングによるスマート社会が大きく発展している.端末やデータセンタ間を往来する通信容量は急増し,エキサバイトを優に超えている.また,安全な通信を保証する量子暗号は原理的に増幅できないため,長距離通信に適用するためには超透明通信媒体が必須となる.本研究で目的とし,明らかにした超透明シリカガラスの広範囲の圧力依存性は,これらの課題を解決する超透明シリカガラスコアファイバを実現するための材料開発の工程で欠かすことのできない社会的な意義の大きいものである.ガラスの光散乱損失が0.8 GPa付近で極小になり,この時の原子構造が明確化されたことでファイバ化で目指すべき構造が明らかとなった.

Report

(2 results)
  • 2023 Final Research Report ( PDF )
  • 2021 Annual Research Report
  • Research Products

    (17 results)

All 2022 2021 Other

All Int'l Joint Research (1 results) Journal Article (4 results) (of which Int'l Joint Research: 2 results,  Peer Reviewed: 4 results,  Open Access: 2 results) Presentation (11 results) (of which Int'l Joint Research: 6 results,  Invited: 10 results) Remarks (1 results)

  • [Int'l Joint Research] ペンシルべニア州立大学(米国)

    • Related Report
      2021 Annual Research Report
  • [Journal Article] Development of optical fibers and glasses for fibers—Evolution of optical fiber glasses from multicomponent to pure silica2022

    • Author(s)
      Ono Madoka、Nishii Junji
    • Journal Title

      Journal of the Ceramic Society of Japan

      Volume: 130 Issue: 8 Pages: 558-562

    • DOI

      10.2109/jcersj2.22064

    • ISSN
      1348-6535, 1882-0743
    • Year and Date
      2022-08-01
    • Related Report
      2021 Annual Research Report
    • Peer Reviewed
  • [Journal Article] Beyond the Average: Spatial and Temporal Fluctuations in Oxide Glass-Forming Systems2022

    • Author(s)
      Kirchner Katelyn A.、Cassar Daniel R.、Zanotto Edgar D.、Ono Madoka、Kim Seong H.、Doss Karan、B?dker Mikkel L.、Smedskjaer Morten M.、Kohara Shinji、Tang Longwen、Bauchy Mathieu、Wilkinson Collin J.、Yang Yongjian、Welch Rebecca S.、Mancini Matthew、Mauro John C.
    • Journal Title

      Chemical Reviews

      Volume: 123 Issue: 4 Pages: 1774-1840

    • DOI

      10.1021/acs.chemrev.1c00974

    • Related Report
      2021 Annual Research Report
    • Peer Reviewed / Open Access / Int'l Joint Research
  • [Journal Article] Theoretical study of the thermal conductivity of silica glass?crystal composites2022

    • Author(s)
      Kim Hongyeun、Yang Yongjian、Tokunaga Hirofumi、Koike Akio、Ono Madoka、Mauro John C.
    • Journal Title

      Journal of the American Ceramic Society

      Volume: 106 Issue: 2 Pages: 977-987

    • DOI

      10.1111/jace.18806

    • Related Report
      2021 Annual Research Report
    • Peer Reviewed / Int'l Joint Research
  • [Journal Article] Void Engineering in Silica Glass for Ultralow Optical Scattering Loss2021

    • Author(s)
      Ono Madoka
    • Journal Title

      Journal of Lightwave Technology

      Volume: 39 Issue: 16 Pages: 5258-5262

    • DOI

      10.1109/jlt.2021.3089171

    • Related Report
      2021 Annual Research Report
    • Peer Reviewed / Open Access
  • [Presentation] Void-Engineering in Silica glass for Ultralow Optical Scattering Loss2022

    • Author(s)
      Madoka Ono
    • Organizer
      ECOC workshop 2022
    • Related Report
      2021 Annual Research Report
    • Int'l Joint Research / Invited
  • [Presentation] 高温高圧処理を施したシリカガラスのX線回折2022

    • Author(s)
      小野円佳
    • Organizer
      第35回日本放射光学会年会・放射光科学合同シンポジウム
    • Related Report
      2021 Annual Research Report
    • Invited
  • [Presentation] シリカガラスの高温高圧処理による低損失化~シリカガラスの構造中の空隙制御 ~2022

    • Author(s)
      小野円佳
    • Organizer
      電子情報通信学会(OCS研究会)
    • Related Report
      2021 Annual Research Report
    • Invited
  • [Presentation] シリカガラスの高温高圧処理を用いた 構造制御による 低散乱損失化と高屈折率化の両立2022

    • Author(s)
      小野円佳
    • Organizer
      日本分光学会 紫外フロンティア分光シンポジウム
    • Related Report
      2021 Annual Research Report
    • Invited
  • [Presentation] 無機ガラスにおける超秩序状態制御と応用2022

    • Author(s)
      小野円佳
    • Organizer
      超秩序構造科学若手の学校
    • Related Report
      2021 Annual Research Report
    • Invited
  • [Presentation] Topology control of silica glass for ultralow optical scattering loss2022

    • Author(s)
      Madoka Ono
    • Organizer
      International Research Training Group "Energy Conversion System"
    • Related Report
      2021 Annual Research Report
    • Int'l Joint Research / Invited
  • [Presentation] Controlling voids in Silica glass, low scattering and its optical properties2022

    • Author(s)
      Madoka Ono
    • Organizer
      Brazil MRS Meeting 2022
    • Related Report
      2021 Annual Research Report
    • Int'l Joint Research / Invited
  • [Presentation] 無機アモルファスの超秩序構造の制御と高機能化2022

    • Author(s)
      小野円佳
    • Organizer
      東北大学 応用物理学セミナー
    • Related Report
      2021 Annual Research Report
    • Invited
  • [Presentation] Development of long-haul optical fibers and glasses for fibers2022

    • Author(s)
      Madoka Ono
    • Organizer
      マレーシア化学会
    • Related Report
      2021 Annual Research Report
    • Int'l Joint Research / Invited
  • [Presentation] Structure and Properties of the Silica glass Pressure-quenched at Liquid phase2021

    • Author(s)
      Madoka Ono, Y. Tanabe, Y. Yong, J. C. Mauro, M. Jeem, M. Fujioka, J. Nishii
    • Organizer
      PACRIM 14 / GOMD '21
    • Related Report
      2021 Annual Research Report
    • Int'l Joint Research
  • [Presentation] The Effect of Hot-Compression on Silica Glass and its Optical Properties2021

    • Author(s)
      Madoka Ono
    • Organizer
      2021 RIES-CEFMS on-line symposium (webinar)
    • Related Report
      2021 Annual Research Report
    • Int'l Joint Research / Invited
  • [Remarks] 北海道大学 電子科学研究所 光電子ナノ材料研究分野 西井研究室

    • URL

      http://nanostructure.es.hokudai.ac.jp/

    • Related Report
      2021 Annual Research Report

URL: 

Published: 2021-04-28   Modified: 2025-01-30  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi