Project/Area Number |
21H01996
|
Research Category |
Grant-in-Aid for Scientific Research (B)
|
Allocation Type | Single-year Grants |
Section | 一般 |
Review Section |
Basic Section 35020:Polymer materials-related
|
Research Institution | Tokyo Institute of Technology |
Principal Investigator |
|
Co-Investigator(Kenkyū-buntansha) |
澤田 敏樹 東京工業大学, 物質理工学院, 准教授 (20581078)
|
Project Period (FY) |
2021-04-01 – 2024-03-31
|
Project Status |
Completed (Fiscal Year 2023)
|
Budget Amount *help |
¥17,420,000 (Direct Cost: ¥13,400,000、Indirect Cost: ¥4,020,000)
Fiscal Year 2023: ¥4,940,000 (Direct Cost: ¥3,800,000、Indirect Cost: ¥1,140,000)
Fiscal Year 2022: ¥5,980,000 (Direct Cost: ¥4,600,000、Indirect Cost: ¥1,380,000)
Fiscal Year 2021: ¥6,500,000 (Direct Cost: ¥5,000,000、Indirect Cost: ¥1,500,000)
|
Keywords | セルロース / 酵素合成 / 自己集合 / 汎用性高分子材料 / 結晶性集合体 / 自己組織化 / 分子集合体 |
Outline of Research at the Start |
水中で自発的に進行する分子の自己集合は、低エネルギーかつ環境低付加な材料創成手法として有用である。本研究では、酵素反応で容易に合成可能なセルロースオリゴマー(セロオリゴ糖)あるいはその片末端に機能基をもつ誘導体からなる結晶性集合体に着目し、様々な汎用性高分子材料に対して自己集合過程をもとにそれら集合体を複合化した後、得られる複合化材料の構造、物性、機能の評価と制御を通じて、本集合体の機能性複合化素材としての潜在的な利用価値を開拓する。
|
Outline of Final Research Achievements |
Molecular self-assembly that proceeds spontaneously in water is useful as a low-energy and environmentally friendly material creation method. In this study, we focused on crystalline aggregates consisting of cellulose oligomers (cello-oligosaccharides) or their derivatives with a functional group at the reducing end, which can be easily synthesized by in vitro enzymatic reaction, and composited them with various versatile polymer materials such as filter paper and nonwoven fabrics based on the self-assembly process. We then evaluated and controlled the structure, physical properties, and functions of the resulting composite materials, and developed the potential application value as functional composite materials.
|
Academic Significance and Societal Importance of the Research Achievements |
濾紙や不織布などの汎用性材料を構成する繊維の表面に、安定性、力学物性、生体適合性などに優れるナノサイズの結晶性集合体を非共有結合で複合化し、それら材料の実質的な表面積を増大させながら高度な機能を簡便かつ安定に付与する点に本研究の学術的意義がある。また、それを実現するための複合化素材として、分子レベルでの構造解析や溶液プロセスの構築が可能な短いセルロース(セロオリゴ糖)を用いる点や、化学的に純粋なセロオリゴ糖に加え、通常は合成がさらに困難な機能基をもつ誘導体を容易に酵素合成して用いる点に本研究のさらなる学術的意義がある。一連の研究を通じて、持続可能な汎用性材料を創出する社会的意義がある。
|