Project/Area Number |
21H02042
|
Research Category |
Grant-in-Aid for Scientific Research (B)
|
Allocation Type | Single-year Grants |
Section | 一般 |
Review Section |
Basic Section 36020:Energy-related chemistry
|
Research Institution | Niigata University |
Principal Investigator |
Yagi Masayuki 新潟大学, 自然科学系, 教授 (00282971)
|
Project Period (FY) |
2021-04-01 – 2024-03-31
|
Project Status |
Completed (Fiscal Year 2023)
|
Budget Amount *help |
¥17,290,000 (Direct Cost: ¥13,300,000、Indirect Cost: ¥3,990,000)
Fiscal Year 2023: ¥5,590,000 (Direct Cost: ¥4,300,000、Indirect Cost: ¥1,290,000)
Fiscal Year 2022: ¥5,590,000 (Direct Cost: ¥4,300,000、Indirect Cost: ¥1,290,000)
Fiscal Year 2021: ¥6,110,000 (Direct Cost: ¥4,700,000、Indirect Cost: ¥1,410,000)
|
Keywords | 人工光合成 / 二酸化炭素還元光カソード / 酸素発生光アノード / 電極触媒 / 錯体触媒 / 酸素発生アノード / 二酸化炭素還元 / 電気触媒 / 二酸化炭素固定 / 触媒 |
Outline of Research at the Start |
化石燃料に依存しない持続可能な脱炭素社会を実現するためには、再生可能エネルギーを用いた二酸化炭素の高効率燃料化ならびに炭素資源化技術の確立が重要である。申請者は最近、酸素発生アノードおよび二酸化炭素還元カソードの開発において、重大なブレークスルーを実現した。本研究では、これらの研究成果を基盤にして更なる高効率アノードおよびカソードを創製すると共に、これらを用いて太陽光二酸化炭素固定システムを構築することにより、世界最高の太陽光二酸化炭素還元効率を達成し、脱炭素社会の実現への足掛かりを得る。
|
Outline of Final Research Achievements |
Using iron complexes with planar ligands, we have developed a molecular catalytic electrode capable of highly efficient and selective reduction of carbon dioxide to carbon monoxide in aqueous solution at low overvoltages. Furthermore, we have recently found that Febpc can efficiently produce carbon monoxide in organic solvents even under extremely low carbon dioxide concentration conditions of 1.9 mM (0.01 atm partial pressure). This is an interesting result indicating that the axial coordination site of the Febpc complex has the ability to effectively uptake carbon dioxide. On the other hand, we have found a method for synthesizing mixed metal oxide films that adhere rigidly to electrode substrates from precursor solutions containing mixed metal complexes with imidazole derivatives as ligands. Using this method, we succeeded in developing a high-performance CuBiO4 photocathode.
|
Academic Significance and Societal Importance of the Research Achievements |
高効率太陽光二酸化炭素固定システムは、将来の再生可能エネルギーを利用した燃料製造技術の基盤となると期待される。将来、太陽光のみならず、洋上風力、地熱などのあらゆる再生可能エネルギーを利用した水素製造システムを中心としたカーボンニュートラル技術を確立することにより、現在の化石燃料をエネルギー源とする全ての産業に波及効果が期待できる。さらに、燃料供給のみでなく、水素を用いた化学製品合成などの様々な産業から、生活様式に至るまで大きな変革をもたらすと予想され、高効率太陽光二酸化炭素固定システムの開発による社会・経済的インパクトは計り知れない。
|