Project/Area Number |
21H02076
|
Research Category |
Grant-in-Aid for Scientific Research (B)
|
Allocation Type | Single-year Grants |
Section | 一般 |
Review Section |
Basic Section 37030:Chemical biology-related
|
Research Institution | Japan Advanced Institute of Science and Technology |
Principal Investigator |
FUJIMOTO KENZO 北陸先端科学技術大学院大学, 先端科学技術研究科, 教授 (90293894)
|
Project Period (FY) |
2021-04-01 – 2024-03-31
|
Project Status |
Completed (Fiscal Year 2023)
|
Budget Amount *help |
¥17,550,000 (Direct Cost: ¥13,500,000、Indirect Cost: ¥4,050,000)
Fiscal Year 2023: ¥4,550,000 (Direct Cost: ¥3,500,000、Indirect Cost: ¥1,050,000)
Fiscal Year 2022: ¥5,460,000 (Direct Cost: ¥4,200,000、Indirect Cost: ¥1,260,000)
Fiscal Year 2021: ¥7,540,000 (Direct Cost: ¥5,800,000、Indirect Cost: ¥1,740,000)
|
Keywords | 光クロスリンク / RNA操作 / RNA編集 / 可逆的DNA光クロスリンク / RNA光クロスリンク / DNA編集 / ゲノム編集 / 超高速RNA光架橋 |
Outline of Research at the Start |
本研究では、対合塩基認識能を有する新規光応答性人工核酸開発を通して正確なRNA操作を創り出すとともに、アップコンバージョン用ナノ粒子を用いた近赤外光励起によるRNA操作を組み込むことで、最終的に細胞内での時空間制御可能な光化学的RNA編集法の確立を目的とする。
|
Outline of Final Research Achievements |
Toward gene therapy by photochemical base conversion, we developed a photochemical base editing method under physiological conditions. First, we found that a phosphate-modified deamination probe greatly accelerated deamination and converted more than 80% of cytosine to uracil in 24 hours under physiological conditions. Next, in vitro pinpoint base conversion from cytosine to uracil in RNA strands was performed using various photo-crosslinked artificial nucleic acids, and it was found that the higher the aqueousness of the surrounding bases, the faster the deamination reaction rate. Next, for the optical manipulation of intracellular RNA, we verified the antisense effect by targeting intracellular mRNA, and found that the faster the photocrosslinking rate, the more effective the gene suppression.
|
Academic Significance and Societal Importance of the Research Achievements |
CRISPR-Cas9技術に代表される様に、ゲノム操作のための新しい遺伝子工学的手法の開発は,幹細胞工学,遺伝子治療,遺伝子組み換え植物の技術など幅広い用途・分野において新産業を産み出す力に直結している。本研究では、超高速光架橋法を用いた時空間制御可能な核酸類操作法の新規開発に挑戦した。その結果,操作波長の長波長化・高速化により高次構造を持つ核酸に対してもアクセスが可能となることや,照射エネルギー依存的な活性制御可能であることなど予想を超える結果を得た。この超高速光クロスリンクを用いた遺伝子発現の光制御は,核酸編集のみならす核酸医薬品開発においても有用な技術と期待される。
|