Project/Area Number |
21H03633
|
Research Category |
Grant-in-Aid for Scientific Research (B)
|
Allocation Type | Single-year Grants |
Section | 一般 |
Review Section |
Basic Section 64020:Environmental load reduction and remediation-related
|
Research Institution | Shizuoka University |
Principal Investigator |
|
Co-Investigator(Kenkyū-buntansha) |
田代 陽介 静岡大学, 工学部, 講師 (30589528)
|
Project Period (FY) |
2021-04-01 – 2024-03-31
|
Project Status |
Completed (Fiscal Year 2023)
|
Budget Amount *help |
¥17,290,000 (Direct Cost: ¥13,300,000、Indirect Cost: ¥3,990,000)
Fiscal Year 2023: ¥5,330,000 (Direct Cost: ¥4,100,000、Indirect Cost: ¥1,230,000)
Fiscal Year 2022: ¥5,980,000 (Direct Cost: ¥4,600,000、Indirect Cost: ¥1,380,000)
Fiscal Year 2021: ¥5,980,000 (Direct Cost: ¥4,600,000、Indirect Cost: ¥1,380,000)
|
Keywords | 代謝 / 細胞外電子伝達 / 硫酸還元細菌 / 微生物燃料電池 / 代謝制御 / 微生物生態 / 電気化学 / 細胞外電子伝達機構 / 制御 / 電極呼吸 |
Outline of Research at the Start |
生物学的廃水処理、環境浄化およびエネルギー生産は、社会基盤を支える重要な技術である。それらの安定的制御あるいは更なる効率化は必須であり、その根幹は微生物の代謝にある。そこで本研究では、エネルギー低負荷型技術の開発にとって必要不可欠な嫌気微生物の代謝に着目する。代表的な嫌気微生物の一種である硫酸還元微生物は、有機物分解や金属腐食に深く関与する善悪両面から注目すべき微生物の一つである。我々は、硫酸還元微生物が細胞外電子伝達)に伴い、通常では排出する酢酸を利用し硫化水素の発生が抑制されること見出した。そこで本研究では、当該微生物の細胞外電子伝達機構とそれに伴う代謝変換機構の解明を目的とする。
|
Outline of Final Research Achievements |
For electrical control of microbial metabolism, we focused on sulfate-reducing bacteria, which are representative anaerobic microorganisms and involved in global material cycling and metal corrosion. Isolates showed extracellular electron transfer (EET) ability at an optimum potential of +0.4 V (vs. SHE). After decoding the full-length genome, heme staining of cells cultured under EET and sulfate-reducing conditions revealed that heme proteins were detected in the extracellular membrane fraction only under EET conditions. Comprehensive transcriptome analysis revealed high transcription of the PilA gene and cytochrome with unknown localization under EET conditions, suggesting a dramatic metabolic change in response to the extracellular environment. In conclusion, we have succeeded in identifying genes and proteins involved in electrical metabolic responses and understanding their expression dynamics in response to environmental changes.
|
Academic Significance and Societal Importance of the Research Achievements |
細胞外電子伝達機構(EET)は生物の新規なエネルギー生産機構として着目され、地球規模での生態系の理解に不可欠と認識されつつある。しかし、その詳細な機構は特定の微生物2種に限定されている。その様な状況下において、代表的嫌気微生物であり地球規模での物質循環や金属腐食にも関与する硫酸還元細菌のEETが遺伝子およびタンパク質レベルで理解を得たことは学術的に大いにインパクトがある。また、電気化学的にEET関連遺伝子およびタンパク質が動的に変化していることは、電気的代謝制御の可能性を示しており金属腐食の軽減化技術に昇華できれば社会的意義は極めて大きいと考えられる。
|