Project/Area Number |
21H04444
|
Research Category |
Grant-in-Aid for Scientific Research (A)
|
Allocation Type | Single-year Grants |
Section | 一般 |
Review Section |
Medium-sized Section 13:Condensed matter physics and related fields
|
Research Institution | Kyoto University |
Principal Investigator |
|
Project Period (FY) |
2021-04-05 – 2024-03-31
|
Project Status |
Completed (Fiscal Year 2023)
|
Budget Amount *help |
¥42,770,000 (Direct Cost: ¥32,900,000、Indirect Cost: ¥9,870,000)
Fiscal Year 2023: ¥9,620,000 (Direct Cost: ¥7,400,000、Indirect Cost: ¥2,220,000)
Fiscal Year 2022: ¥11,830,000 (Direct Cost: ¥9,100,000、Indirect Cost: ¥2,730,000)
Fiscal Year 2021: ¥21,320,000 (Direct Cost: ¥16,400,000、Indirect Cost: ¥4,920,000)
|
Keywords | 単一光子 / ナノ光ファイバ / ダイヤモンド / 量子情報 / 六方晶窒化ホウ素 |
Outline of Research at the Start |
本研究では、同一性が高く、かつ高効率の単一光子源の実現を目ざす。原子間力顕微鏡と共焦点顕微鏡を組み合わせた装置により、単一のシリコン欠陥中心を含有するナノダイヤモンドを、我々が独自に開発したファイバへの結合損失が極めて小さいナノファイバブラッグ共振器(NFBC)に結合させ、ハイブリッド単一光子源を構築する。この研究は、光子を用いた量子情報科学の鍵である、多数の光子からなる複雑な量子状態生成にブレークスルーをもたらすと共に、将来の大規模光量子シミュレーターや超高感度量子センシングに路を拓くものである。
|
Outline of Final Research Achievements |
In this study, we have investigated the realization of a single photon source that generates identical photons with high probability. In particular, a hybrid device of a single photon emitter such as silicon defect (SiV) centers in diamond and a microcavity-embedded nano-optical fiber. As a result, we have developed a novel method to efficiently fabricate SiV-embedded nanodiamond and confirmed that the sample has a narrow linewidth below the resolution of a spectrometer (0.1 nm) at 4 K. Furthermore, we have succeeded in realizing hybrid devices of hBN defect centers and resonator-embedded nano-optical fibers, as well as multi-photon multi-mode states with quantum correlations beyond the linear optics limit. As described above, we have obtained various research results on the realization of highly efficient single-photon sources.
|
Academic Significance and Societal Importance of the Research Achievements |
本研究により、シリコン欠陥中心内包極微ナノダイヤモンドの効率的な作製方法の確立と極低温での評価、さらに六方晶窒化ホウ素中の欠陥中心と共振器内蔵ナノ光ファイバのハイブリッド素子の実現、さらに線形光学限界を超えた量子相関をもつ多光子多モード状態の実現など、高効率単一光子源の実現とその応用に関する様々な成果が得られた。これらは、量子光学やナノフォトニクス分野における学術的に高い意義が認められ、Science Advancesなどの権威ある学術誌に論文として掲載されている。また、将来的には、光量子情報通信処理や光量子センシングなどの応用の社会実装にとり重要なステップとなる成果である。
|