Project/Area Number |
21H04662
|
Research Category |
Grant-in-Aid for Scientific Research (A)
|
Allocation Type | Single-year Grants |
Section | 一般 |
Review Section |
Medium-sized Section 30:Applied physics and engineering and related fields
|
Research Institution | Osaka University |
Principal Investigator |
|
Co-Investigator(Kenkyū-buntansha) |
李 艶君 大阪大学, 大学院工学研究科, 准教授 (50379137)
|
Project Period (FY) |
2021-04-05 – 2024-03-31
|
Project Status |
Completed (Fiscal Year 2023)
|
Budget Amount *help |
¥42,640,000 (Direct Cost: ¥32,800,000、Indirect Cost: ¥9,840,000)
Fiscal Year 2023: ¥6,890,000 (Direct Cost: ¥5,300,000、Indirect Cost: ¥1,590,000)
Fiscal Year 2022: ¥15,990,000 (Direct Cost: ¥12,300,000、Indirect Cost: ¥3,690,000)
Fiscal Year 2021: ¥19,760,000 (Direct Cost: ¥15,200,000、Indirect Cost: ¥4,560,000)
|
Keywords | 光誘起力顕微鏡 / 近接場光学顕微鏡 |
Outline of Research at the Start |
本研究では、力検出を用いた近接場光学顕微鏡(光誘起力顕微鏡)のさらなる超高感度化・超高分解能化を実現すると共に、その原子分解能観察の機構を解明する。具体的な課題としては、まず、光誘起力を原子分解能で観察するための最適条件を理論的・実験的に解明する。次に、励起状態・非励起状態における単一分子の光誘起分極パターンを原子分解能で観察し、その画像化機構を解明する。さらに、円偏光した光に対するキラル分子の誘起分極パターンを原子分解能で観察し、その画像化機構を解明する。
|
Outline of Final Research Achievements |
Photoinduced polarization patterns for copper phthalocyanine molecules were successfully measured with high resolution. For linearly polarized incident light, the photoinduced force increased outside the copper phthalocyanine molecule. In order to measure chirality with high sensitivity, a light irradiation system in which rightward and leftward circular polarizations are alternately switched was realized. The material surface is irradiated with light that modulates the circular polarization, and the modulation component that appears in the frequency shift of the cantilever is detected by a lock-in amplifier, enabling the measurement of chirality. Furthermore, the photoinduced force was increased inside the copper phthalocyanine molecule for circularly polarized incident light.
|
Academic Significance and Societal Importance of the Research Achievements |
光が誘起する分極には電子励起状態の情報が含まれ、光と物質との相互作用において中心的役割を持つ物理量である。しかし、これまで原子スケールでこれを直接観察した例はない。本研究では、励起状態・非励起状態における単一分子の光誘起分極パターンを原子分解能で観察し、その画像化機構を解明するという、これまで誰も成し得なかった究極の目標に挑戦した。したがって、本研究は、光と物質との相互作用について、これまでの固定概念の見直しを迫り、新たな現象や機能を探索・解明する研究と位置づけられる。
|