• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Creation and implementation of an innovative flow control paradigm utilizing machine learning

Research Project

Project/Area Number 21H05007
Research Category

Grant-in-Aid for Scientific Research (S)

Allocation TypeSingle-year Grants
Review Section Broad Section C
Research InstitutionKeio University

Principal Investigator

深潟 康二  慶應義塾大学, 理工学部(矢上), 教授 (80361517)

Co-Investigator(Kenkyū-buntansha) 山本 誠  東京理科大学, 工学部機械工学科, 教授 (20230584)
岩本 薫  東京農工大学, 工学(系)研究科(研究院), 教授 (50408712)
長谷川 洋介  東京大学, 生産技術研究所, 教授 (30396783)
塚原 隆裕  東京理科大学, 創域理工学部機械航空宇宙工学科, 教授 (60516186)
福島 直哉  東海大学, 工学部, 准教授 (80585240)
守 裕也  電気通信大学, 大学院情報理工学研究科, 教授 (80706383)
Project Period (FY) 2021-07-05 – 2026-03-31
Project Status Granted (Fiscal Year 2025)
Budget Amount *help
¥194,090,000 (Direct Cost: ¥149,300,000、Indirect Cost: ¥44,790,000)
Fiscal Year 2025: ¥17,160,000 (Direct Cost: ¥13,200,000、Indirect Cost: ¥3,960,000)
Fiscal Year 2024: ¥17,420,000 (Direct Cost: ¥13,400,000、Indirect Cost: ¥4,020,000)
Fiscal Year 2023: ¥17,940,000 (Direct Cost: ¥13,800,000、Indirect Cost: ¥4,140,000)
Fiscal Year 2022: ¥59,020,000 (Direct Cost: ¥45,400,000、Indirect Cost: ¥13,620,000)
Fiscal Year 2021: ¥82,550,000 (Direct Cost: ¥63,500,000、Indirect Cost: ¥19,050,000)
Keywords流体力学 / 機械学習 / 流れの制御 / 低次元モデル / データ駆動
Outline of Research at the Start

流れの制御に機械学習を用いることにより,新たな流れの制御手法構築の方法論を提案する.具体的には,畳込みニューラルネットワークに基づくオートエンコーダを流れ場の非線形低次元モード抽出のための中核技術として用い,低次元化されたシステムに対してスパース回帰法などを用いてそのダイナミクスを記述し,その低次元ダイナミクスに対して現代制御理論などを適用することにより制御則を構築する.これにより従来よりも効果的な機械学習に基づく非線形なモデルベース制御手法構築の方法論を確立する.

Outline of Annual Research Achievements

畳み込みニューラルネットワーク(CNN)オートエンコーダを用いた次元削減による制御則に関しては、昨年度提案した手法に軌道の成長率を学習パラメータとして取り入れた新たなモデルにより、制御を含む2次元円柱周り流れを2次元の潜在変数空間で表現することに成功し、物理空間においても渦放出を抑制できることが直接数値シミュレーションによっても確認できた(Ishize et al., 2023)。関連して、乱流の速度の時系列データが持つ決定論的カオスと軌道不安定に基づく非線形予測可能性を調査した(Mamori et al., 2023)。また、別のアプローチとして、流れ場と最適制御入力の関係性を機械学習を用いて抽出し、これを実際に流れに付与することにより抵抗低減効果を確認した(Yugeta et al., 2023)。また、最適制御のコスト関数を機械学習によって生成し、有効な制御則の開発を試みた(Yugeta and Hasegawa, 2023)。さらに、円管内脈動乱流における抵抗低減制御に関する深層学習モデルを提案した(Matsubara et al., 2023)。強化学習を用いた制御に関しては、壁近傍の渦構造に着目した強化学習モデルの提案や、瞬時の流れ場情報に基づく新しいフィードバック制御則の発見(Sonoda et al., 2023)などを行った。限られた情報からの場の推定に関しては、CNNを用いたスカラ乱流拡散の時間推定における推定限界の調査(Tsukahara et al., 2023)や、2次元データからの3次元速度場の推定(Matsuo et al., 2024)に取り組んだ。応用に向けた研究としては、新設した風洞を用いた円柱周り流れの受動制御(廣田ら,2024)や、航空機着氷予測における着氷離脱モデルの開発を行った(Hirose et al., 2023)。

Current Status of Research Progress
Current Status of Research Progress

2: Research has progressed on the whole more than it was originally planned.

Reason

1.CNNオートエンコーダを用いた次元削減による制御則に関して、基本となる手法が少なくとも潜在変数空間が2次元で表現できる流れに対して十分に確立できたため。
2.強化学習を用いた乱流抵抗低減制御において十分な制御効果が検証できたことに加え、コスト関数の発見という新たな道筋が示されたため。
3.決定論的カオスと軌道不安定に基づく非線形予測可能性といった、目標達成のための新たな理論的研究が一定の成果を収めているため。
4.限られたセンサ情報からの流れ場の推定においても、より複雑な流れに対する応用が進んでいるため。
5.非ニュートン流や混相流など、より複雑な流れへの適用や実応用を見据えた要素研究も順調に進んでいるため。
6.新設風洞の基本特性の評価が終了し、これを用いた受動制御の実験的研究も進展し、最終目標である実験的検証への目途も立ったため。

Strategy for Future Research Activity

2021~2022年度は上述の要素研究を重点的に進め、2023年度は要素研究のうちさらに改善の必要があるものに関しては引き続き進め、並行して最終目標に向けてベースラインとなる流れの風洞実験を行った。2024年度、CNNオートエンコーダを用いた次元削減による制御則に関しては、より高い次元の潜在空間を持つ流れに対する基本的な検討として、Linear Systems Extracting Autoencoder (LEAE)の常微分方程式レイヤーを多層パーセプトロンで置き換えたモデルを用いてミニマルチャネル乱流(潜在変数の次元は1000のオーダー)での適用可能性の基本調査を行う。また、強化学習に関してもより多様な制御への応用を進める。さらに、円柱周り流れや壁に沿う乱流などのカノニカルな流れに対する機械学習ベース制御の風洞実験・水槽実験を用いた実験的実証のための要素デバイスの開発を行う。最終年度には実証実験を行い、一連の成果に基づき産業応用への可能性を見極め、流れ制御手法構築の方法論を確立する。

Assessment Rating
Interim Assessment Comments (Rating)

A-: In light of the aim of introducing the research area into the research categories, the expected progress in research has been made on the whole though a part of it has been delayed.

Report

(7 results)
  • 2023 Abstract (Interim Assessment) ( PDF )   Annual Research Report   Interim Assessment (Comments) ( PDF )
  • 2022 Annual Research Report
  • 2021 Abstract ( PDF )   Comments on the Screening Results ( PDF )   Annual Research Report
  • Research Products

    (230 results)

All 2024 2023 2022 2021 Other

All Int'l Joint Research (7 results) Journal Article (34 results) (of which Int'l Joint Research: 12 results,  Peer Reviewed: 27 results,  Open Access: 18 results) Presentation (187 results) (of which Int'l Joint Research: 66 results,  Invited: 28 results) Remarks (2 results)

  • [Int'l Joint Research] UCLA(米国)

    • Related Report
      2023 Annual Research Report
  • [Int'l Joint Research] KTH(スウェーデン)

    • Related Report
      2022 Annual Research Report
  • [Int'l Joint Research] UCLA/Argonne National Laboratory/Johns Hopkins University(米国)

    • Related Report
      2022 Annual Research Report
  • [Int'l Joint Research] Karlsruhe Institute of Technology(ドイツ)

    • Related Report
      2022 Annual Research Report
  • [Int'l Joint Research] Johannes Kepler University(オーストリア)

    • Related Report
      2022 Annual Research Report
  • [Int'l Joint Research] UCLA/Rutgers University/University of Nevada(米国)

    • Related Report
      2021 Annual Research Report
  • [Int'l Joint Research] KTH(スウェーデン)

    • Related Report
      2021 Annual Research Report
  • [Journal Article] Turbulent drag reduction by streamwise traveling waves of wall-normal forcing2024

    • Author(s)
      K. Fukagata, K. Iwamoto, and Y. Hasegawa
    • Journal Title

      Annual Review of Fluid Mechchanics

      Volume: 56 Issue: 1 Pages: 69-90

    • DOI

      10.1146/annurev-fluid-120720-021445

    • Related Report
      2023 Annual Research Report
    • Peer Reviewed / Open Access
  • [Journal Article] Theoretical and numerical analyses of turbulent plane Couette flow controlled using uniform blowing and suction2024

    • Author(s)
      Y. Nabae and K. Fukagata
    • Journal Title

      International Journal of Heat and Fluid Flow

      Volume: 106 Pages: 109286-109286

    • DOI

      10.1016/j.ijheatfluidflow.2024.109286

    • Related Report
      2023 Annual Research Report
    • Peer Reviewed
  • [Journal Article] Reconstructing three-dimensional bluff body wake from sectional flow fields with convolutional neural networks2024

    • Author(s)
      M. Matsuo, T. Nakamura, M. Morimoto, K. Fukami, and K. Fukagata
    • Journal Title

      SN Computer Science

      Volume: 5 Issue: 3

    • DOI

      10.1007/s42979-024-02602-0

    • Related Report
      2023 Annual Research Report
    • Peer Reviewed
  • [Journal Article] Three-dimensional trajectory and impingement simulation of ice crystals considering state changes on the rotor blade of an axial fan.2024

    • Author(s)
      K. Hirose, K. Fukudome, H. Mamori, and M. Yamamoto
    • Journal Title

      Aerospace

      Volume: 11 Issue: 1 Pages: 2-2

    • DOI

      10.3390/aerospace11010002

    • Related Report
      2023 Annual Research Report
    • Peer Reviewed / Open Access
  • [Journal Article] Multi-objective topology optimization of heat transfer surface using level-set method and adaptive mesh refinement in OpenFOAM2024

    • Author(s)
      D. Chen, P. Kumar, Y. Kametani, and Y. Hasegawa
    • Journal Title

      International Journal of Heat and Mass Transfer

      Volume: 221 Pages: 125099-125099

    • DOI

      10.1016/j.ijheatmasstransfer.2023.125099

    • Related Report
      2023 Annual Research Report
    • Peer Reviewed / Open Access
  • [Journal Article] Deep learning estimation of scalar source distance for different turbulent and molecular diffusion environments2024

    • Author(s)
      T. Tsukahara, T. Ishigami, and M. Irikura
    • Journal Title

      Journal of Fluid Science and Technology

      Volume: 19 Issue: 2 Pages: JFST0020-JFST0020

    • DOI

      10.1299/jfst.2024jfst0020

    • ISSN
      1880-5558
    • Related Report
      2023 Annual Research Report
    • Peer Reviewed / Open Access
  • [Journal Article] 機械学習の基礎と流体問題への応用2023

    • Author(s)
      深潟 康二
    • Journal Title

      ターボ機械

      Volume: 51 Pages: 10-16

    • Related Report
      2023 Annual Research Report
  • [Journal Article] Super-resolution analysis via machine learning: A survey for fluid flows2023

    • Author(s)
      K. Fukami, K. Fukagata, and K. Taira
    • Journal Title

      Theorerical and Computational Fluid Dynamics

      Volume: 37 Issue: 4 Pages: 421-444

    • DOI

      10.1007/s00162-023-00663-0

    • Related Report
      2023 Annual Research Report
    • Peer Reviewed / Open Access / Int'l Joint Research
  • [Journal Article] Prediction of pulsating turbulent pipe flow by deep learning with generalization capability2023

    • Author(s)
      K. Matsubara, A. Mitsuishi, K. Iwamoto, and A. Murata
    • Journal Title

      International Journal of Heat and Fluid Flow

      Volume: 104 Pages: 109214-109214

    • DOI

      10.1016/j.ijheatfluidflow.2023.109214

    • Related Report
      2023 Annual Research Report
    • Peer Reviewed
  • [Journal Article] Prediction of optimal control input in a fully developed turbulent channel flow by machine learning2023

    • Author(s)
      Y. Yugeta, K. Uji, Y. Itoh, and Y. Hasegawa.
    • Journal Title

      Journal of Fluid Science and Technology

      Volume: 18 Issue: 4 Pages: JFST0033-JFST0033

    • DOI

      10.1299/jfst.2023jfst0033

    • ISSN
      1880-5558
    • Related Report
      2023 Annual Research Report
    • Peer Reviewed / Open Access
  • [Journal Article] Dynamic state of low-Reynolds-number turbulent channel flow2023

    • Author(s)
      Mamori Hiroya、Nabae Yusuke、Fukuda Shingo、Gotoda Hiroshi
    • Journal Title

      Physical Review E

      Volume: 108 Issue: 2 Pages: 025105-025105

    • DOI

      10.1103/physreve.108.025105

    • Related Report
      2023 Annual Research Report
    • Peer Reviewed
  • [Journal Article] A new perspective on skin-friction contributions in adverse-pressure-gradient turbulent boundary layers2023

    • Author(s)
      M. Atzori, F. Mallor, R. Pozuelo, K. Fukagata, R. Vinuesa, and P. Schlatter
    • Journal Title

      International Journal of Heat and Fluid Flow

      Volume: 101 Pages: 109117-109117

    • DOI

      10.1016/j.ijheatfluidflow.2023.109117

    • Related Report
      2022 Annual Research Report
    • Peer Reviewed / Open Access / Int'l Joint Research
  • [Journal Article] Multi-objective optimization of actuation waveform for high-precision drop-on-demand inkjet printing2023

    • Author(s)
      H. Wang, Y. Hasegawa
    • Journal Title

      Physics of Fluids

      Volume: 35 Issue: 1 Pages: 013318-013318

    • DOI

      10.1063/5.0122124

    • Related Report
      2022 Annual Research Report
    • Peer Reviewed / Open Access
  • [Journal Article] Reinforcement learning of control strategies for reducing skin friction drag in a fully developed turbulent channel flow2023

    • Author(s)
      T. Sonoda, Z. Liu, T. Itoh, Y. Hasegawa
    • Journal Title

      Journal of Fluid Mechanics

      Volume: 930

    • DOI

      10.1017/jfm.2023.147

    • Related Report
      2022 Annual Research Report
    • Peer Reviewed / Open Access
  • [Journal Article] 畳み込みニューラルネットワークを用いた流体場の低次元化と欠損情報推定2022

    • Author(s)
      深潟 康二
    • Journal Title

      日本風工学会誌

      Volume: 47 Pages: 215-220

    • Related Report
      2022 Annual Research Report
  • [Journal Article] 基礎的な流れ場に対する機械学習の応用2022

    • Author(s)
      深潟 康二
    • Journal Title

      日本ガスタービン学会誌

      Volume: 50 Pages: 179-184

    • Related Report
      2022 Annual Research Report
  • [Journal Article] Assessments of epistemic uncertainty using Gaussian stochastic weight averaging for fluid-flow regression2022

    • Author(s)
      M. Morimoto, K. Fukami, R. Maulik, R. Vinuesa, and K. Fukagata
    • Journal Title

      Physica D: Nonlinear Phenomena

      Volume: 440 Pages: 133454-133454

    • DOI

      10.1016/j.physd.2022.133454

    • Related Report
      2022 Annual Research Report
    • Peer Reviewed / Int'l Joint Research
  • [Journal Article] Drag reduction effect of streamwise traveling wave-like wall deformation with spanwise displacement variation in turbulent channel flow2022

    • Author(s)
      Y. Nabae and K. Fukagata
    • Journal Title

      Flow, Turbulence and Combustion

      Volume: 109 Issue: 4 Pages: 1175-1194

    • DOI

      10.1007/s10494-022-00334-w

    • Related Report
      2022 Annual Research Report
    • Peer Reviewed
  • [Journal Article] Robust training approach of neural networks for fluid flow state estimations2022

    • Author(s)
      T. Nakamura and K. Fukagata
    • Journal Title

      International Journal of Heat and Fluid Flow

      Volume: 96 Pages: 108997-108997

    • DOI

      10.1016/j.ijheatfluidflow.2022.108997

    • Related Report
      2022 Annual Research Report
    • Peer Reviewed
  • [Journal Article] Applicability of convolutional neural network for estimation of turbulent diffusion distance from source point2022

    • Author(s)
      T. Ishigami, M. Irikura, and T. Tsukahara
    • Journal Title

      Processes

      Volume: 10 Issue: 12 Pages: 2545-2545

    • DOI

      10.3390/pr10122545

    • Related Report
      2022 Annual Research Report
    • Peer Reviewed / Open Access
  • [Journal Article] Machine learning to estimate the mass-diffusion distance from a point source under turbulent conditions2022

    • Author(s)
      T. Ishigami, M. Irikura, and T. Tsukahara
    • Journal Title

      Processes

      Volume: 10 Issue: 5 Pages: 860-860

    • DOI

      10.3390/pr10050860

    • Related Report
      2022 Annual Research Report
    • Peer Reviewed / Open Access
  • [Journal Article] Applying Bayesian optimization with Gaussian process regression to computational fluid dynamics problems2022

    • Author(s)
      Y. Morita, S. Rezaeiravesh, N. Tabatabaei, R. Vinuesa, K. Fukagata, and P. Schlatter
    • Journal Title

      Journal of Computational Physics

      Volume: 449 Pages: 110788-110788

    • DOI

      10.1016/j.jcp.2021.110788

    • Related Report
      2021 Annual Research Report
    • Peer Reviewed / Open Access / Int'l Joint Research
  • [Journal Article] Generalization techniques of neural networks for fluid flow estimation2022

    • Author(s)
      M. Morimoto, K. Fukami, K. Zhang, and K. Fukagata
    • Journal Title

      Neural Computing and Applications

      Volume: 34 Issue: 5 Pages: 3647-3669

    • DOI

      10.1007/s00521-021-06633-z

    • Related Report
      2021 Annual Research Report
    • Peer Reviewed / Open Access / Int'l Joint Research
  • [Journal Article] Identifying key differences between linear stochastic estimation and neural networks for fluid flow regressions2022

    • Author(s)
      T. Nakamura, K. Fukami, and K. Fukagata
    • Journal Title

      Scientific Reports

      Volume: 12 Issue: 1

    • DOI

      10.1038/s41598-022-07515-7

    • Related Report
      2021 Annual Research Report
    • Peer Reviewed / Open Access / Int'l Joint Research
  • [Journal Article] Convolutional neural networks for fluid flow analysis: toward effective metamodeling and low dimensionalization2021

    • Author(s)
      M. Morimoto, K. Fukami, K. Zhang, A. G. Nair, and K. Fukagata
    • Journal Title

      Theoretical and Computational Fluid Dynamics

      Volume: 35 Issue: 5 Pages: 633-658

    • DOI

      10.1007/s00162-021-00580-0

    • Related Report
      2021 Annual Research Report
    • Peer Reviewed / Open Access / Int'l Joint Research
  • [Journal Article] Global field reconstruction from sparse sensors with Voronoi tessellation-assisted deep learning2021

    • Author(s)
      K. Fukami, R. Maulik, N. Ramachandra, K. Fukagata, and K. Taira
    • Journal Title

      Nature Machine Intelligence

      Volume: 3 Issue: 11 Pages: 945-951

    • DOI

      10.1038/s42256-021-00402-2

    • Related Report
      2021 Annual Research Report
    • Peer Reviewed / Int'l Joint Research
  • [Journal Article] Sparse identification of nonlinear dynamics with low-dimensionalized flow representations2021

    • Author(s)
      K. Fukami, T. Murata, K. Zhang, and K. Fukagata
    • Journal Title

      Journal of Fluid Mechanics

      Volume: 926

    • DOI

      10.1017/jfm.2021.697

    • Related Report
      2021 Annual Research Report
    • Peer Reviewed / Open Access / Int'l Joint Research
  • [Journal Article] Experimental velocity data estimation for imperfect particle images using machine learning2021

    • Author(s)
      M. Morimoto, K. Fukami, and K. Fukagata
    • Journal Title

      Physics of Fluids

      Volume: 33 Issue: 8 Pages: 087121-087121

    • DOI

      10.1063/5.0060760

    • Related Report
      2021 Annual Research Report
    • Peer Reviewed / Int'l Joint Research
  • [Journal Article] Model order reduction with neural networks: Application to laminar and turbulent flows2021

    • Author(s)
      K. Fukami, K. Hasegawa, T. Nakamura, M. Morimoto, and K. Fukagata
    • Journal Title

      SN Computer Science

      Volume: 2 Issue: 6

    • DOI

      10.1007/s42979-021-00867-3

    • Related Report
      2021 Annual Research Report
    • Peer Reviewed / Open Access / Int'l Joint Research
  • [Journal Article] Bayesian optimization of traveling wave-like wall deformation for friction drag reduction in turbulent channel flow2021

    • Author(s)
      Y. Nabae and K. Fukagata
    • Journal Title

      Journal of Fluid Science and Technology

      Volume: 16 Issue: 4 Pages: JFST0024-JFST0024

    • DOI

      10.1299/jfst.2021jfst0024

    • NAID

      130008127783

    • ISSN
      1880-5558
    • Related Report
      2021 Annual Research Report
    • Peer Reviewed / Open Access
  • [Journal Article] 機械学習の乱流への応用2021

    • Author(s)
      深潟 康二
    • Journal Title

      日本機械学会誌

      Volume: 124(1232) Pages: 10-13

    • Related Report
      2021 Annual Research Report
  • [Journal Article] 機械学習縮約モデルを用いた革新的流れ制御に向けて2021

    • Author(s)
      深潟 康二,深見 開
    • Journal Title

      伝熱

      Volume: 60(253) Pages: 12-15

    • Related Report
      2021 Annual Research Report
    • Int'l Joint Research
  • [Journal Article] 乱流の機械学習と制御2021

    • Author(s)
      深潟 康二
    • Journal Title

      フルードパワーシステム

      Volume: 52(6) Pages: 237-241

    • Related Report
      2021 Annual Research Report
  • [Journal Article] 計測とシミュレーションの融合による熱流動場の推定2021

    • Author(s)
      長谷川 洋介
    • Journal Title

      機械の研究

      Volume: 73 (12) Pages: 911-918

    • Related Report
      2021 Annual Research Report
  • [Presentation] データ駆動型SGSモデルの構築に向けたチャネル乱流の残差学習2024

    • Author(s)
      佐伯 龍飛, 後藤 陸, 三浦 怜之, 深潟 康二
    • Organizer
      日本機械学会関東学生会第63回学生員卒業研究発表講演会
    • Related Report
      2023 Annual Research Report
  • [Presentation] 受動的な吸込みによる円柱周り流れ制御の風洞実験2024

    • Author(s)
      廣田 拓真, 大杉 卓矢, 深潟 康二
    • Organizer
      日本機械学会関東学生会第63回学生員卒業研究発表講演会
    • Related Report
      2023 Annual Research Report
  • [Presentation] 機械学習を用いた非線形方程式の線形化手法の開発2024

    • Author(s)
      舩井 一真, 岩澤 瑠夏, 大道 浩志, 石瀬 健, 深潟 康二
    • Organizer
      日本機械学会関東学生会第63回学生員卒業研究発表講演会
    • Related Report
      2023 Annual Research Report
  • [Presentation] スパン方向への位相変化を伴う主流方向進行波状壁面変形によるチャネル乱流の抵抗低減2024

    • Author(s)
      大石 恭平, 難波江 佑介, 深潟 康二
    • Organizer
      日本機械学会関東学生会第63回学生員卒業研究発表講演会
    • Related Report
      2023 Annual Research Report
  • [Presentation] パーセル近似を導入した格子‐粒子カップリング法を用いた雨氷条件下でのSLD着氷シミュレーション2024

    • Author(s)
      兼次 正隆,阿部 優輝,福留 功二,藤村 宗一郎,山本 誠
    • Organizer
      第39回生研TSFDシンポジウム
    • Related Report
      2023 Annual Research Report
  • [Presentation] CNN based Mode Decomposition Model with Weight-Shared Decoder for Complex Flows2024

    • Author(s)
      Y. Shimoda and N. Fukushima
    • Organizer
      APS March Meeting 2024
    • Related Report
      2023 Annual Research Report
  • [Presentation] 機械学習による流れのはく離検出手法の構築2023

    • Author(s)
      後藤 陸,石瀬 健,深潟 康二
    • Organizer
      日本機械学会2023年度年次大会
    • Related Report
      2023 Annual Research Report
  • [Presentation] 畳み込みニューラルネットワークを用いた壁面情報からの二次元衝突噴流の状態推定2023

    • Author(s)
      岩澤 瑠夏,三浦 怜之,深潟 康二
    • Organizer
      日本機械学会2023年度年次大会
    • Related Report
      2023 Annual Research Report
  • [Presentation] 効果的な流れ制御フレームワークに向けた機械学習縮約モデリング2023

    • Author(s)
      大道 浩志,石瀬 健,深潟 康二
    • Organizer
      第30回乱流制御研究会
    • Related Report
      2023 Annual Research Report
  • [Presentation] 主流方向進行波による抵抗低減効果 -実装に向けた取り組み-2023

    • Author(s)
      難波江 佑介,深潟 康二
    • Organizer
      第2回せん断流の多様な機能の探求と先端科学技術への応用に関する研究分科会(4)
    • Related Report
      2023 Annual Research Report
  • [Presentation] 進行波状壁面変形を施したチャネル乱流におけるSGSモデルの評価2023

    • Author(s)
      難波江 佑介,稲垣 和寛,小林 宏充,後藤田 浩,深潟 康二
    • Organizer
      日本流体力学会年会2023
    • Related Report
      2023 Annual Research Report
  • [Presentation] 機械学習を用いた円柱周り流れにおける異常検知手法の開発2023

    • Author(s)
      後藤 陸,石瀬 健,三浦 怜之,深潟 康二
    • Organizer
      日本流体力学会年会2023
    • Related Report
      2023 Annual Research Report
  • [Presentation] Development of a machine learning-based anomaly detection method for fluid flows2023

    • Author(s)
      後藤 陸,石瀬 健,三浦 怜之,深潟 康二
    • Organizer
      第31回乱流制御研究会
    • Related Report
      2023 Annual Research Report
  • [Presentation] チャネル乱流におけるスパン方向への位相変化を伴う主流方向進行波状壁面変形の抵抗低減効果2023

    • Author(s)
      大石 恭平,難波江 佑介,深潟 康二
    • Organizer
      第37回数値流体力学シンポジウム
    • Related Report
      2023 Annual Research Report
  • [Presentation] クエット乱流における主流方向進行波を用いた非相似制御の試み2023

    • Author(s)
      難波江 佑介,後藤田 浩,深潟 康二
    • Organizer
      第37回数値流体力学シンポジウム
    • Related Report
      2023 Annual Research Report
  • [Presentation] 半教師あり学習による浮動センサからの状態推定2023

    • Author(s)
      三浦 怜之,深潟 康二
    • Organizer
      第37回数値流体力学シンポジウム
    • Related Report
      2023 Annual Research Report
  • [Presentation] チャネル乱流における残差学習 : データ駆動型SGSモデルの構築に向けて2023

    • Author(s)
      佐伯 龍飛,後藤 陸,三浦 怜之,深潟 康二
    • Organizer
      第37回数値流体力学シンポジウム
    • Related Report
      2023 Annual Research Report
  • [Presentation] オートエンコーダを用いた最小限の非線形性を有する線形システム抽出法の開発2023

    • Author(s)
      石瀬 健,大道 浩志,深潟 康二
    • Organizer
      第37回数値流体力学シンポジウム
    • Related Report
      2023 Annual Research Report
  • [Presentation] オートエンコーダベースの線形システム抽出法を用いた流れ制御手法の開発2023

    • Author(s)
      石瀬 健,大道 浩志,深潟 康二
    • Organizer
      第32回乱流制御研究会
    • Related Report
      2023 Annual Research Report
  • [Presentation] Neural-network-based estimator for turbulent flows from limited heat information2023

    • Author(s)
      R. Miura, M. Matsuo, T. Nakamura, and K. Fukagata
    • Organizer
      Keio-Kasetsart Joint Workshop in Mechanical Engineering
    • Related Report
      2023 Annual Research Report
  • [Presentation] Data-driven improvement of particle image velocimetry without DNS data2023

    • Author(s)
      H. Omichi, T. Ishize, and K. Fukagata
    • Organizer
      ASME-JSME-KSME Joint Fluids Engineering Conference 2023 (AJK FED2023)
    • Related Report
      2023 Annual Research Report
    • Int'l Joint Research
  • [Presentation] Parametric study to optimize micro-cavity array for friction drag reduction2023

    • Author(s)
      H. Suzuki, Y. Okochi, and K. Fukagata
    • Organizer
      ASME-JSME-KSME Joint Fluids Engineering Conference 2023 (AJK FED2023)
    • Related Report
      2023 Annual Research Report
    • Int'l Joint Research
  • [Presentation] Development of reduced order modeling-based linear system extracting method for efficient data handling with a minimal nonlinearity2023

    • Author(s)
      T. Ishize and K. Fukagata
    • Organizer
      76th Annual Meeting of the APS Division of Fluid Dynamics (APS-DFD 2023)
    • Related Report
      2023 Annual Research Report
  • [Presentation] Machine-learned reduced order modeling toward an effective flow control framework2023

    • Author(s)
      H. Omichi, T. Ishize and K. Fukagata
    • Organizer
      76th Annual Meeting of the APS Division of Fluid Dynamics (APS-DFD 2023)
    • Related Report
      2023 Annual Research Report
  • [Presentation] Semi-supervised machine learning model for Lagrangian state estimation2023

    • Author(s)
      R. Miura and K. Fukagata
    • Organizer
      76th Annual Meeting of the APS Division of Fluid Dynamics (APS-DFD 2023)
    • Related Report
      2023 Annual Research Report
  • [Presentation] Estimation of oscillation parameters of a circular cylinder from its downstream vorticity fields2023

    • Author(s)
      H. Chida, K. Zhang, and K. Fukagata
    • Organizer
      76th Annual Meeting of the APS Division of Fluid Dynamics (APS-DFD 2023)
    • Related Report
      2023 Annual Research Report
  • [Presentation] マルチショット計算を導入した格子-粒子カップリング法による雨氷条件下でのSLD着氷の数値シミュレーション2023

    • Author(s)
      兼次 正隆,阿部 優輝,福留 功二,藤村 宗一郎,山本 誠
    • Organizer
      日本ガスタービン学会第51回定期講演会
    • Related Report
      2023 Annual Research Report
  • [Presentation] 氷粒子付着判定を導入したアイスクリスタル着氷モデルの数値的研究2023

    • Author(s)
      龍田 和佳奈,福留 功二,藤村 宗一郎,山本 誠
    • Organizer
      日本ガスタービン学会第51回定期講演会
    • Related Report
      2023 Annual Research Report
  • [Presentation] 計算負荷低減手法を用いたSLD着氷の格子-粒子カップリングシミュレーションの数値的研究2023

    • Author(s)
      阿部 優輝,兼次 正隆,福留 功二,藤村 宗一郎,山本 誠
    • Organizer
      日本ガスタービン学会第51回定期講演会
    • Related Report
      2023 Annual Research Report
  • [Presentation] ファン動静翼における雨滴衝突の三次元数値予測2023

    • Author(s)
      池田 悠馬,福留 功二,藤村 宗一郎,山本 誠,鈴木 正也,林 亮輔,岡田 隆一
    • Organizer
      日本ガスタービン学会第51回定期講演会
    • Related Report
      2023 Annual Research Report
  • [Presentation] ジェットエンジンのファン動翼における着氷と氷離脱に関する数値的研究2023

    • Author(s)
      馬場 達也,福留 功二,藤村 宗一郎,山本 誠,水野 拓哉,鈴木 正也
    • Organizer
      日本流体力学会第37回数値流体力学シンポジウム
    • Related Report
      2023 Annual Research Report
  • [Presentation] Development of an ice shedding model for icing simulation on rotor blades2023

    • Author(s)
      T. Baba, K. Fukudome, S. Fujimura, M. Yamamoto, T. Mizuno, and M. Suzuki
    • Organizer
      International Conference on Icing of Aircraft, Engines, and Structures, SAE2023
    • Related Report
      2023 Annual Research Report
    • Int'l Joint Research
  • [Presentation] Development of machine learning model for selecting the 1st coil in the treatment of cerebral aneurysms by coil embolization2023

    • Author(s)
      S. Fujimura, T. Koshiba, T. Ishibashi, G. Kudo, K. Takeshita, M. Kazama, K. Karagiozov, K. Fukudome, H. Takao, H. Ohwada, Y. Murayama, and M. Yamamoto
    • Organizer
      45th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, (EMBC2023)
    • Related Report
      2023 Annual Research Report
    • Int'l Joint Research
  • [Presentation] Numerical investigation of aerocraft icing using combination method of grid-based and particle-based simulations2023

    • Author(s)
      K. Fukudome, Y. Abe, M. Kaneshi, and M. Yamamoto
    • Organizer
      KSME-JSME Joint Symposium on Computational Mechanics & CAE 2023
    • Related Report
      2023 Annual Research Report
    • Invited
  • [Presentation] Numerical study on modelling of ice crystal icing2023

    • Author(s)
      W. Tatsuta, K. Fukudome, and M. Yamamoto
    • Organizer
      10th International Symposium on Turbulence, Heat and Mass Transfer (THMT10)
    • Related Report
      2023 Annual Research Report
    • Int'l Joint Research
  • [Presentation] Numerical investigation of electro-thermal antiicing effect on CFRP fan rotor blades2023

    • Author(s)
      H. Kondo, K. Fukudome, M. Yamamoto, T. Mizuno, and M. Suzuki
    • Organizer
      10th International Symposium on Turbulence, Heat and Mass Transfer (THMT10)
    • Related Report
      2023 Annual Research Report
    • Int'l Joint Research
  • [Presentation] Multi-shot Icing simulation on NACA0012 airfoil under glaze ice condition by hybrid grid- and particle-based method2023

    • Author(s)
      M. Kaneshi, Y. Abe, K. Fukudome, S. Fujimura, and M.Yamamoto
    • Organizer
      8th International Conference on Particle-Based Methods (PARTICLES2023)
    • Related Report
      2023 Annual Research Report
    • Int'l Joint Research
  • [Presentation] Investigation on acceleration method of grid-particle coupling simulation for SLD icing2023

    • Author(s)
      Y. Abe, M. Kaneshi, K. Fukudome, S. Fujimura, and M. Yamamoto
    • Organizer
      8th International Conference on Particle-Based Methods (PARTICLES2023)
    • Related Report
      2023 Annual Research Report
    • Int'l Joint Research
  • [Presentation] Numerical Simulation of Ice Particle Impingement on Wall with Liquid Water Film Using Particle Method2023

    • Author(s)
      T. Keira, K. Fukudome, S. Fujimura, and M. Yamamoto
    • Organizer
      8th International Conference on Particle-Based Methods (PARTICLES2023)
    • Related Report
      2023 Annual Research Report
    • Int'l Joint Research
  • [Presentation] Numerical investigation of impact velocity and impact angle in secondary droplets by water droplet impingement on thin water film using E-MPS method2023

    • Author(s)
      M. Kaneshi, K. Fukudome, S. Fujimura, and M. Yamamoto
    • Organizer
      International Gas Turbine Congress 2023 (IGTC2023)
    • Related Report
      2023 Annual Research Report
    • Int'l Joint Research
  • [Presentation] Numerical simulation of sand erosion phenomenon considering particle fracture in a multi-stage compressor2023

    • Author(s)
      Y. Ikeda, K. Fukudome, M. Yamamoto, M. Suzuki, R. Hayashi, and R. Okada
    • Organizer
      International Gas Turbine Congress 2023 (IGTC2023)
    • Related Report
      2023 Annual Research Report
    • Int'l Joint Research
  • [Presentation] Improvement of thermodynamics on icing simulation using grid-particle coupling method2023

    • Author(s)
      Y. Abe, M. Kaneshi, K. Fukudome, S. Fujimura, and M. Yamamoto
    • Organizer
      International Gas Turbine Congress 2023 (IGTC2023)
    • Related Report
      2023 Annual Research Report
    • Int'l Joint Research
  • [Presentation] 円管内脈動乱流における乱流統計量の予測精度向上を目的とした深層学習モデルとCNN低次元モードの解析2023

    • Author(s)
      熊澤 創太,仁村 友洋,村田 章,岩本 薫
    • Organizer
      第37回数値流体力学シンポジウム
    • Related Report
      2023 Annual Research Report
  • [Presentation] 対向制御を基に壁近傍の渦構造に着目した強化学習による抵抗低減制御2023

    • Author(s)
      佐藤 大晟,仁村 友洋,村田 章,岩本 薫
    • Organizer
      日本流体力学会年会2023
    • Related Report
      2023 Annual Research Report
  • [Presentation] 層流-乱流の亜臨界遷移~低Reでの乱流維持抑制~,各種乱流現象の機械学習~スカラ場や粘弾性推定~2023

    • Author(s)
      塚原 隆裕
    • Organizer
      一般社団法人 日本機械学会 RC297「カーボンニュートラルに貢献する熱流体技術の開発に向けた産学ネットワーキングのための研究分科会」第三回分科会
    • Related Report
      2023 Annual Research Report
    • Invited
  • [Presentation] Deep learning estimation of scalar source in turbulence2023

    • Author(s)
      T. Tsukahara
    • Organizer
      AJKFED2023 (The ASME-JSME-KSME Joint Fluids Engineering Conference)
    • Related Report
      2023 Annual Research Report
    • Int'l Joint Research / Invited
  • [Presentation] Deep neural network surrogate model for predicting viscoelastic channel flows2023

    • Author(s)
      T. Tsukahara
    • Organizer
      The 9th Asian Symposium on Computational Heat Transfer and Fluid Flow
    • Related Report
      2023 Annual Research Report
    • Int'l Joint Research
  • [Presentation] CNN for scalar-source distance estimation in grid-generated turbulence2023

    • Author(s)
      S. Someya and T. Tsukahara
    • Organizer
      The 33rd International Symposium on Transport Phenomena
    • Related Report
      2023 Annual Research Report
    • Int'l Joint Research
  • [Presentation] Point source estimation via deep learning for passive scalar turbulent diffusion2023

    • Author(s)
      T. Ishigami, M. Irikura, and T. Tsukahara
    • Organizer
      The 10th International Symposium on Turbulence, Heat and Mass Transfer
    • Related Report
      2023 Annual Research Report
    • Int'l Joint Research
  • [Presentation] U-LSTMを用いた粘弾性乱流の構成応力予測2023

    • Author(s)
      中島 英哲,塚原 隆裕
    • Organizer
      第39回生研TSFDシンポジウム 乱流シミュレーションと流れの設計
    • Related Report
      2023 Annual Research Report
  • [Presentation] 粘弾性壁乱流における構成応力予測のためのU-Net学習器の汎化性能2023

    • Author(s)
      髙橋 拓海,荒木 亮,塚原 隆裕
    • Organizer
      第37回数値流体力学シンポジウム
    • Related Report
      2023 Annual Research Report
  • [Presentation] 有限測定データを用いたPODに基づく速度場の推定とAR可視化2023

    • Author(s)
      太田 佑,Revela Yaroslav,Liu Zhuchen,塚原 隆裕,長谷川 洋介
    • Organizer
      第37回数値流体力学シンポジウム
    • Related Report
      2023 Annual Research Report
  • [Presentation] 格子乱流中におけるスカラー拡散源距離のCNN応用推定法2023

    • Author(s)
      染谷 駿介,荒木 亮,塚原 隆裕
    • Organizer
      第37回数値流体力学シンポジウム
    • Related Report
      2023 Annual Research Report
  • [Presentation] CNN-Based Mode Decomposition for Unsteady Flows with Deterministic Latent Space2023

    • Author(s)
      Y. Shimoda and N. Fukushima
    • Organizer
      ASME-JSME-KSME Fluids Engineering Division 2023
    • Related Report
      2023 Annual Research Report
  • [Presentation] 複雑な非定常流れの特徴抽出のための重み共有型CNNモード分解モデル2023

    • Author(s)
      下田 瑶祐,福島 直哉
    • Organizer
      第37回数値流体力学シンポジウム
    • Related Report
      2023 Annual Research Report
  • [Presentation] Direct numerical simulations of turbulent flow over sinusoidal superhydrophobic surfaces2023

    • Author(s)
      J. Morita, H, Mamori, and T. Miyazaki
    • Organizer
      ASME-JSME-KSME Joint Fluids Engineering Conference 2023 (AJK FED2023)
    • Related Report
      2023 Annual Research Report
    • Int'l Joint Research
  • [Presentation] Drag-reducing performance of superhydrophobic surfaces with sinusoidal grooves in wall turbulence2023

    • Author(s)
      J. Morita, H. Mamori, and T. Miyazaki
    • Organizer
      Turbulence, Heat and Mass Transfer 10
    • Related Report
      2023 Annual Research Report
  • [Presentation] 正弦波型超撥水面を与えた平行平板間乱流の直接数値計算2023

    • Author(s)
      森田 淳一, 守裕也,宮嵜 武
    • Organizer
      日本流体力学会 年会2023
    • Related Report
      2023 Annual Research Report
  • [Presentation] バンプを有するチャネル乱流での吹出し・吸込みによる抵抗低減効果2023

    • Author(s)
      大河内 祐輔,難波江 佑介,深潟 康二
    • Organizer
      第38回東大生研TSFDシンポジウム/第29回乱流制御研究会 合同シンポジウム
    • Related Report
      2022 Annual Research Report
  • [Presentation] 二次元レゾルベント解析による渦放出抑制フィードバック制御則の提案2023

    • Author(s)
      佐藤 碧,難波江 佑介,深潟 康二
    • Organizer
      第38回東大生研TSFDシンポジウム/第29回乱流制御研究会 合同シンポジウム
    • Related Report
      2022 Annual Research Report
  • [Presentation] Applications of convolutional neural networks to classical fluid flow fields2023

    • Author(s)
      K. Fukagata
    • Organizer
      Mathematical Structures in Quantum Fluids
    • Related Report
      2022 Annual Research Report
    • Int'l Joint Research / Invited
  • [Presentation] Super-resolving turbulent flows with machine learning: a surve2023

    • Author(s)
      K. Fukami, K. Fukagata, and K. Taira
    • Organizer
      SIAM Conference on Computational Science and Engineering (CSE23)
    • Related Report
      2022 Annual Research Report
    • Int'l Joint Research
  • [Presentation] 流体力学と深層学習の融合:機械学習縮約モデルを用いた革新的流れ制御に向けて2022

    • Author(s)
      深潟 康二
    • Organizer
      日本学術会議 公開シンポジウム「第12回計算力学シンポジウム」
    • Related Report
      2022 Annual Research Report
    • Invited
  • [Presentation] 畳み込みニューラルネットワークを用いた流れ場の低次元化・推定および制御2022

    • Author(s)
      深潟 康二
    • Organizer
      日本機械学学会RC286「流れの先進的計測・シミュレーション法と流体情報の高度利用に関する研究分科会」第6回分科会
    • Related Report
      2022 Annual Research Report
    • Invited
  • [Presentation] アテンション機構を用いた流体現象の抽象的理解に向けた試み2022

    • Author(s)
      石瀬 健,兼平 昇英,深潟 康二
    • Organizer
      日本機械学会2022年度年次大会
    • Related Report
      2022 Annual Research Report
  • [Presentation] レゾルベント解析による円柱後流の渦放出抑制を目指した制御則の提案2022

    • Author(s)
      佐藤 碧,難波江 佑介,深潟 康二
    • Organizer
      日本流体力学会年会2022
    • Related Report
      2022 Annual Research Report
  • [Presentation] 機械学習縮約モデルを用いた革新的流れ制御に向けて2022

    • Author(s)
      深潟 康二
    • Organizer
      第83回関西CAE懇話会
    • Related Report
      2022 Annual Research Report
    • Invited
  • [Presentation] 流れの機械学習における内部構造の可視化手法の検討2022

    • Author(s)
      石瀬 健, 兼平 昇英 , 深潟 康二
    • Organizer
      第36回数値流体力学シンポジウム
    • Related Report
      2022 Annual Research Report
  • [Presentation] DNSデータを用いない機械学習による粒子画像流速測定法の信頼性向上2022

    • Author(s)
      大道 浩志, 千田 晃, 石瀬 健, 松尾 光昭, 深潟 康二
    • Organizer
      第36回数値流体力学シンポジウム
    • Related Report
      2022 Annual Research Report
  • [Presentation] Reconstructing turbulence with deep learning: uncertainty quantification and outlook2022

    • Author(s)
      K. Fukami, R. Maulik, N. Ramachandra, M. Morimoto, R. Vinuesa, K. Fukagata, and K. Taira
    • Organizer
      2022 SIAM Conference on Uncertainty Quantification (UQ22)
    • Related Report
      2022 Annual Research Report
    • Int'l Joint Research
  • [Presentation] Applications of convolutional neural network autoencoder for fluid flow analysis2022

    • Author(s)
      K. Fukagata
    • Organizer
      33rd Parallel CFD International Conference (ParCFD 2022)
    • Related Report
      2022 Annual Research Report
    • Int'l Joint Research / Invited
  • [Presentation] A new point of view on skin-friction contributions in adverse-pressure-gradient turbulent boundary layers2022

    • Author(s)
      M. Atzori, S. Stroh, D. Gatti, K. Fukagata, R. Vinuesa, and P. Schlatter
    • Organizer
      12th International Symposium on Turbulence and Shear Flow Phenomena (TSFP12)
    • Related Report
      2022 Annual Research Report
    • Int'l Joint Research
  • [Presentation] Theoretical and numerical analyses of unifor blowing and suction in turbulent plane Couette flow2022

    • Author(s)
      Y. Nabae and K. Fukagata
    • Organizer
      12th International Symposium on Turbulence and Shear Flow Phenomena (TSFP12)
    • Related Report
      2022 Annual Research Report
    • Int'l Joint Research
  • [Presentation] Feedback control effect in turbulent channel flow with a bump by means of direct numerical simulation2022

    • Author(s)
      Y. Okochi, Y. Nabae and K. Fukagata
    • Organizer
      12th International Symposium on Turbulence and Shear Flow Phenomena (TSFP12)
    • Related Report
      2022 Annual Research Report
    • Int'l Joint Research
  • [Presentation] Deep learning-based unsteady flow estimation: Nonlinear convolution of wakes behind an oscillating cylinder2022

    • Author(s)
      H. Chida, T. Nakamura, K. Zhang, and K. Fukagata
    • Organizer
      15th World Congress on Computational Mechanics (WCCM-XV)
    • Related Report
      2022 Annual Research Report
    • Int'l Joint Research
  • [Presentation] Application of evolutional deep neural network to external flows2022

    • Author(s)
      M. Matsuo, K. Fukagata, and T. Zaki
    • Organizer
      15th World Congress on Computational Mechanics (WCCM-XV)
    • Related Report
      2022 Annual Research Report
    • Int'l Joint Research
  • [Presentation] A low-cost resolvent analysis of flow around a bluff body2022

    • Author(s)
      A. Sato and K. Fukagata
    • Organizer
      15th World Congress on Computational Mechanics (WCCM-XV)
    • Related Report
      2022 Annual Research Report
    • Int'l Joint Research
  • [Presentation] Quantifying uncertainty in deep learning for fluid flow reconstruction2022

    • Author(s)
      R. Maulik, K. Fukami, M. Morimoto, N. Ramachandra, R. Vinuesa, K. Fukagata, and K. Taira
    • Organizer
      USACM Thematic Conference on Uncertainty Quantification for Machine Learning Integrated Physics Modeling (MLIP)
    • Related Report
      2022 Annual Research Report
    • Int'l Joint Research
  • [Presentation] 格子-粒子カップリングを用いたNACA0012翼における雨氷条件下のSLD着氷シミュレーション2022

    • Author(s)
      兼次正隆,河野結香,福留功二,山本誠
    • Organizer
      日本流体力学会 年会2022
    • Related Report
      2022 Annual Research Report
  • [Presentation] 未破裂脳動脈瘤に対する破裂予測手法の違いが予測結果に与える影響2022

    • Author(s)
      角南昭太,高尾 洋之,藤村宗一郎,葛西智基,内川隼杜, 湯澤和也,石橋敏寛,福留功二,山本誠,村山雄一
    • Organizer
      日本流体力学会 年会2022
    • Related Report
      2022 Annual Research Report
  • [Presentation] CFRP電熱防氷技術における消費電力の影響に関する数値シミュレーション2022

    • Author(s)
      高羽欣,福留功二,山本誠,水野拓哉,鈴木正也
    • Organizer
      第50回日本ガスタービン学会定期講演会
    • Related Report
      2022 Annual Research Report
  • [Presentation] E-MPS法を用いた薄膜を有する壁面に対する水滴衝突による二次液滴の数値シミュレーション2022

    • Author(s)
      兼次正隆,福留功二,山本誠
    • Organizer
      日本機械学会 第100期流体工学部門講演会
    • Related Report
      2022 Annual Research Report
  • [Presentation] 回転翼の着氷に対する氷離脱モデルに関する数値的研究2022

    • Author(s)
      馬場達也,福留功二,山本誠,水野拓哉,鈴木正也
    • Organizer
      日本機械学会 第100期流体工学部門講演会
    • Related Report
      2022 Annual Research Report
  • [Presentation] CFD解析及び機械学習(Random Forest)を用いた未破裂脳動脈瘤に対する破裂予測モデルの構築に関する研究2022

    • Author(s)
      角南昭太, 高尾洋之,藤村宗一郎, 工藤 元樹,内川隼杜,湯澤和也,葛西智基,石橋敏寛,福留功二,大和田 勇人, 山本誠, 村山雄一
    • Organizer
      第38回NPO法人日本脳神経血管内治療学会学術総会
    • Related Report
      2022 Annual Research Report
  • [Presentation] Numerical Simulation of Droplet Impingement on Wall with Thin Liquid Film by E-MPS Method2022

    • Author(s)
      M. Kaneshi, K. Fukudome, and M. Yamamoto
    • Organizer
      15th World Congress on Computational Mechanics & 8th Asian Pacific Congress on Computational Mechanics (WCCM-APCOM 2022)
    • Related Report
      2022 Annual Research Report
    • Int'l Joint Research
  • [Presentation] Numerical Investigation of Solidification Process of Impinging Supercooled Water Droplet using Explicit Moving Particle Simulation2022

    • Author(s)
      K. Fukudome, Y. Kono, and M. Yamamoto
    • Organizer
      15th World Congress on Computational Mechanics & 8th Asian Pacific Congress on Computational Mechanics (WCCM-APCOM 2022)
    • Related Report
      2022 Annual Research Report
    • Int'l Joint Research / Invited
  • [Presentation] Growing turbulent spot in plane Couette flow provides dissimilarity between momentum and heat transfers2022

    • Author(s)
      K. Fukudome, T. Tsukahara, H. Mamori, and M. Yamamoto
    • Organizer
      The 12th International Symposium on Turbulence and Shear Flow Phenomena (TSFP12)
    • Related Report
      2022 Annual Research Report
    • Int'l Joint Research
  • [Presentation] The Effect on Rupture Prediction Accuracy of Unruptured Cerebral Aneurysms by Combining Multiple Parameters2022

    • Author(s)
      S. Sunami, H. Takao, S. Fujimura, T. Kasai, K. Yuzawa, H. Uchikawa , T. Ishibashi, K. Fukudome, Y. Murayama, and M. Yamamoto
    • Organizer
      44th Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC 2022)
    • Related Report
      2022 Annual Research Report
    • Int'l Joint Research
  • [Presentation] Numerical Investigation on Ice Shedding from Rotor Blades2022

    • Author(s)
      T. Baba, K. Fukudome, M. Yamamoto, T. Mizuno, and M. Suzuki
    • Organizer
      Asian Congress on Gas Turbines 2022 (ACGT2022)
    • Related Report
      2022 Annual Research Report
    • Int'l Joint Research
  • [Presentation] Numerical Simulation for Prediction of Secondary Droplets by Water Droplet impingement on Thin Water Film using E-MPS Method2022

    • Author(s)
      M. Kaneshi, K. Fukudome, and M. Yamamoto
    • Organizer
      9th Asian Joint Workshop on Thermophysics and Fluid Science (AJWTF2022)
    • Related Report
      2022 Annual Research Report
    • Int'l Joint Research
  • [Presentation] Effect of Multistep and Heat Transfer Coefficient Model on Super-cooled Large Droplet Icing on NACA0012 Airfoil2022

    • Author(s)
      Y. Lei, K. Fukudome, and M. Yamamoto
    • Organizer
      9th Asian Joint Workshop on Thermophysics and Fluid Science (AJWTF2022)
    • Related Report
      2022 Annual Research Report
    • Int'l Joint Research
  • [Presentation] The Study about Rupture Prediction Model Building for Small Unruptured Cerebral Aneurysms by Using Random Forest2022

    • Author(s)
      S. Sunami, H. Takao, S. Fujimura, G. Kudou, T. Kasai, K. Yuzawa, H. Uchikawa , T. Ishibashi, K. Fukudome, Y. Murayama, and M. Yamamoto
    • Organizer
      The Society of Vascular and Interventional Neurology (SVIN 2022)
    • Related Report
      2022 Annual Research Report
    • Int'l Joint Research
  • [Presentation] Comparison of the Stents Length by Virtual Stent Simulation with the Actual Stent Length2022

    • Author(s)
      K. Yuzawa, H. Takao, S. Fujimura, S. Sunami, T. Kasai, H. Uchikawa , T. Ishibashi, K. Fukudome, Y. Murayama, and M. Yamamoto
    • Organizer
      The Society of Vascular and Interventional Neurology (SVIN 2022)
    • Related Report
      2022 Annual Research Report
    • Int'l Joint Research
  • [Presentation] 円管内乱流の脈動制御の最適化に向けた機械学習による抵抗低減効果の予測2022

    • Author(s)
      橘田 拓歩,光石 暁彦,岩本 薫,村田 章
    • Organizer
      日本機械学会 第100期 流体工学部門 講演会
    • Related Report
      2022 Annual Research Report
  • [Presentation] 円管内脈動乱流の時系列予測を目的とした深層学習モデルにおける CNN 低元モードの解析次2022

    • Author(s)
      松原一憲,光石 暁彦,岩本 薫,村田 章
    • Organizer
      第 36 回数値流体力学シンポジウム
    • Related Report
      2022 Annual Research Report
  • [Presentation] Prediction of Friction Drag in Pulsating Turbulent Pipe Flow by Deep Learning for Improvement of Generalization Capability2022

    • Author(s)
      K. Matsubara, A. Mitsuishi, K. Iwamoto and A. Murata
    • Organizer
      The 12th International Symposium on Turbulence and Shear Flow Phenomena
    • Related Report
      2022 Annual Research Report
    • Int'l Joint Research
  • [Presentation] Prediction of Drag Reduction Effect in Turbulent Pulsating Pipe Flow by Machine Learning Based on Experimental Data2022

    • Author(s)
      T. Kitta, A. Mitsuishi, K. Iwamoto and A. Murata
    • Organizer
      The 12th International Symposium on Turbulence and Shear Flow Phenomena
    • Related Report
      2022 Annual Research Report
    • Int'l Joint Research
  • [Presentation] 非一様流における移動センサを用いたスカラー源探査手法に関する研究2022

    • Author(s)
      大西 諒,太田 佑,塚原 隆裕,Dominik Henzel,Xu Han,大澤 崇行,長谷川 洋介
    • Organizer
      第38回生研TSFDシンポジウム
    • Related Report
      2022 Annual Research Report
  • [Presentation] チャネル乱流中のスカラー拡散源位置に関するCNNを用いた回帰推定のDNS検証2022

    • Author(s)
      栗原 稔幸,石神 隆寛,塚原 隆裕
    • Organizer
      日本機械学会 第100期 流体工学部門講演会 講演論文集
    • Related Report
      2022 Annual Research Report
  • [Presentation] LSTMを用いた粘弾性チャネル乱流における構成応力の予測2022

    • Author(s)
      田代 雅哉,塚原 隆裕
    • Organizer
      日本流体力学会年会2022 講演論文集
    • Related Report
      2022 Annual Research Report
  • [Presentation] 低レイノルズ数回転平面クエット流れにおける粘弾性流体の不安定性2022

    • Author(s)
      高橋 拓海,仁村 友洋,塚原 隆裕
    • Organizer
      日本流体力学会年会2022 講演論文集
    • Related Report
      2022 Annual Research Report
  • [Presentation] Inter- and extra-polations of source estimation by CNN to identify a scalar point source in turbulent channel flow2022

    • Author(s)
      T. Kurihara, T. Ishigami, and T. Tsukahara
    • Organizer
      9th Asian Joint Workshop on Thermophysics and Fluid Science (AJWTF2022)
    • Related Report
      2022 Annual Research Report
  • [Presentation] Research on scalar source search by physics-informed neural network and a robot with a sensor2022

    • Author(s)
      R. Onishi, T. Tsukahara, D. Henzel, T. Osawa, and Y. Hasegawa
    • Organizer
      9th Asian Joint Workshop on Thermophysics and Fluid Science (AJWTF2022)
    • Related Report
      2022 Annual Research Report
  • [Presentation] CNN-based estimation of scalar diffusion source distance under grid-generated turbulence2022

    • Author(s)
      S. Someya, T. Ishigami, and T. Tsukahara
    • Organizer
      9th Asian Joint Workshop on Thermophysics and Fluid Science (AJWTF2022)
    • Related Report
      2022 Annual Research Report
  • [Presentation] Prediction of constitutive stress for viscoelastic fluid turbulence with LSTM2022

    • Author(s)
      M. Tashiro and T. Tsukahara
    • Organizer
      9th Asian Joint Workshop on Thermophysics and Fluid Science (AJWTF2022)
    • Related Report
      2022 Annual Research Report
  • [Presentation] DNS-CNN simulation of viscoelastic turbulent flow using U-Net2022

    • Author(s)
      M. Tashiro and T. Tsukahara
    • Organizer
      The 15th World Congress in Computational Mechanics & 8th Asian Pacific Congress on Computational Mechanics (WCCM-APCOM 2022)
    • Related Report
      2022 Annual Research Report
  • [Presentation] 畳み込みニューラルネットワークを用いた非定常流れの時空間モード分解2022

    • Author(s)
      下田 瑶祐,福島 直哉
    • Organizer
      第36回数値流体力学シンポジウム
    • Related Report
      2022 Annual Research Report
  • [Presentation] CNNを用いた非定常流れ場の低次元動的表現2022

    • Author(s)
      下田 瑶祐,福島 直哉
    • Organizer
      日本流体力学会年会2022
    • Related Report
      2022 Annual Research Report
  • [Presentation] Low-dimensional Dynamic Representation of Unsteady Flow using Convolutional Neural Network2022

    • Author(s)
      Y. Shimoda and N. Fukushima
    • Organizer
      9th Asian Joint Workshop on Thermophysics and Fluid Science
    • Related Report
      2022 Annual Research Report
    • Int'l Joint Research
  • [Presentation] Spatio-Temporal Mode Decomposition of Unsteady Flow with Convolutional Neural Network2022

    • Author(s)
      Y. Shimoda and N. Fukushima
    • Organizer
      75th Annual Meeting of the American Physical Society’s Division of Fluid Dynamics
    • Related Report
      2022 Annual Research Report
  • [Presentation] Low-Dimensional Representation of Unsteady Flow Based on CNN and LSTM2022

    • Author(s)
      Y. Shimoda and N. Fukushima
    • Organizer
      The 15th World Congress on Computational Mechanics
    • Related Report
      2022 Annual Research Report
  • [Presentation] バックステップ乱流における進行波状外力を用いた剥離制御2022

    • Author(s)
      森田 淳一, 守裕也,宮嵜 武
    • Organizer
      日本流体力学会 年会2022
    • Related Report
      2022 Annual Research Report
  • [Presentation] 千鳥配置状超撥水面を設置した平行平板間乱流の直接数値計算2022

    • Author(s)
      平田 大冬, 守裕也,宮嵜 武
    • Organizer
      日本流体力学会 年会2022
    • Related Report
      2022 Annual Research Report
  • [Presentation] リブレットを設置した平行平板間乱流における粒子挙動と付着の影響2022

    • Author(s)
      清水智加良、守裕也、宮嵜武
    • Organizer
      日本機械学会 第100期 流体工学部門 講演会
    • Related Report
      2022 Annual Research Report
  • [Presentation] Effect of wave-like body force control on reattachment length in backward-facing step turbulent flow2022

    • Author(s)
      J. Morita, H. Mamori, T. Miyazaki.
    • Organizer
      12th International Symposium on Turbulence and Shear Flow Phenomena
    • Related Report
      2022 Annual Research Report
    • Int'l Joint Research
  • [Presentation] Numerical simulation of turbulent channel flow with particle adhered riblet surfaces2022

    • Author(s)
      C. Shimizu, J. Morita, H. Mamori, T. Miyazaki
    • Organizer
      12th International Symposium on Turbulence and Shear Flow Phenomena
    • Related Report
      2022 Annual Research Report
    • Int'l Joint Research
  • [Presentation] Influence of particle adhesion on drag reduction effect by staggered superhydrophobic surface in turbulent channel flow2022

    • Author(s)
      D. Hirata, J. Morita, H. Mamori, T. Miyazaki
    • Organizer
      12th International Symposium on Turbulence and Shear Flow Phenomena
    • Related Report
      2022 Annual Research Report
    • Int'l Joint Research
  • [Presentation] Streamwise traveling wave-like control for wall turbulence2022

    • Author(s)
      H. Mamori
    • Organizer
      9th Asian Joint Workshop on Thermophysics and Fluid Science
    • Related Report
      2022 Annual Research Report
    • Invited
  • [Presentation] Reconstructing turbulent flows with machine-learning-based super-resolution analysis2022

    • Author(s)
      K. Fukami, K. Fukagata, and K. Taira
    • Organizer
      AI Super-Resolution Simulations: from Climate Science to Cosmology
    • Related Report
      2021 Annual Research Report
    • Int'l Joint Research / Invited
  • [Presentation] Application of machine learning to turbulent flows2022

    • Author(s)
      K. Fukagata
    • Organizer
      7th International Conference on Jets, Wakes and Separated Flows (ICJWSF2022)
    • Related Report
      2021 Annual Research Report
    • Int'l Joint Research / Invited
  • [Presentation] Applications of convolutional neural networks to turbulence2022

    • Author(s)
      K. Fukagata
    • Organizer
      INI Workshop, Wall-bounded turbulence: beyond current boundaries (TURW04)
    • Related Report
      2021 Annual Research Report
    • Int'l Joint Research / Invited
  • [Presentation] 畳み込みニューラルネットワークの流体解析への応用2022

    • Author(s)
      深潟 康二
    • Organizer
      自動車技術会シンポジウム 16-21「AI時代の計測・CFD技術の新展開」
    • Related Report
      2021 Annual Research Report
    • Invited
  • [Presentation] 畳み込みニューラルネットワークを用いた流体場の低次元化と欠損情報推定2022

    • Author(s)
      深潟 康二
    • Organizer
      電子情報通信学会 情報論的学習理論と機械学習研究会(IBISML)
    • Related Report
      2021 Annual Research Report
    • Invited
  • [Presentation] Toward Machine-Learning Assisted Fluid Mechanics2022

    • Author(s)
      深潟 康二
    • Organizer
      日本学術会議 公開シンポジウム「第7回理論応用力学シンポジウム-力学のさらなる発展に向けて-」
    • Related Report
      2021 Annual Research Report
    • Invited
  • [Presentation] 伝熱促進と抵抗低減の同時達成のためのフィン形状の最適化2022

    • Author(s)
      大杉 卓矢,新井 梨乃,難波江 佑介,深潟 康二
    • Organizer
      日本機械学会関東学生会第61回学生員卒業研究発表講演会
    • Related Report
      2021 Annual Research Report
  • [Presentation] 熱流束センサ情報とニューラルネットワークを用いたチャネル乱流の状態推定2022

    • Author(s)
      三浦 怜之,松尾 光昭,中村 太一,深潟 康二
    • Organizer
      日本機械学会関東学生会第61回学生員卒業研究発表講演会
    • Related Report
      2021 Annual Research Report
  • [Presentation] 深層学習ベースの非定常流れ推定:振動物体を伴う流れの非線形畳み込み2022

    • Author(s)
      千田 晃,中村 太一,張 凱,深潟 康二
    • Organizer
      日本機械学会関東学生会第61回学生員卒業研究発表講演会
    • Related Report
      2021 Annual Research Report
  • [Presentation] 機械学習を用いた流体現象の抽象的理解に向けた試み2022

    • Author(s)
      石瀬 健,兼平 昇英,深潟 康二
    • Organizer
      日本機械学会関東学生会第61回学生員卒業研究発表講演会
    • Related Report
      2021 Annual Research Report
  • [Presentation] 畳み込みニューラルネットワークを用いた流体場の低次元化2022

    • Author(s)
      深潟 康二
    • Organizer
      計測自動制御学会制御部門 低次元モデルに基づく先進的流体制御調査研究会 第1回研究会
    • Related Report
      2021 Annual Research Report
    • Invited
  • [Presentation] 流体場への畳み込みニューラルネットワークの応用2022

    • Author(s)
      深潟 康二
    • Organizer
      JSPS国際拠点形成事業「磁場の多様性が拓く超高温プラズマダイナミクスと構造形成の国際拠点形成」PLADySセミナー
    • Related Report
      2021 Annual Research Report
    • Invited
  • [Presentation] 粘弾性流体乱流に対する機械学習代理モデル2022

    • Author(s)
      塚原 隆裕
    • Organizer
      電子情報通信学会 情報論的学習理論と機械学習研究会 (IBISML) 第45回IBISML研究会
    • Related Report
      2021 Annual Research Report
    • Invited
  • [Presentation] Prediction of Unsteady Flow using Autoencoder Network with Convolutional LSTM2022

    • Author(s)
      Y. Shimoda and N. Fukushima
    • Organizer
      The 32nd International Symposium on Transport Phenomena
    • Related Report
      2021 Annual Research Report
    • Int'l Joint Research
  • [Presentation] Reduced Order Model of Unsteady Flow Using CNN and LSTM2022

    • Author(s)
      Y. Shimoda and N. Fukushima
    • Organizer
      The 7th International Conference on Jets, Wakes and Separated Flows
    • Related Report
      2021 Annual Research Report
    • Int'l Joint Research
  • [Presentation] Latent variable-based analysis with machine learning for reduced-order modeling and control of fluid flows2021

    • Author(s)
      K. Fukami, K. Hasegawa, T. Nakamura, S. Kanehira, and K. Fukagata
    • Organizer
      16th U.S. National Congress on Computational Mechanics
    • Related Report
      2021 Annual Research Report
    • Int'l Joint Research
  • [Presentation] Parameter influence of supervised/unsupervised use of convolutional neural networks for fluid flow analyses2021

    • Author(s)
      M. Morimoto, K. Fukami, K. Zhang, A. G. Nair, and K. Fukagata
    • Organizer
      16th U.S. National Congress on Computational Mechanics
    • Related Report
      2021 Annual Research Report
    • Int'l Joint Research
  • [Presentation] Error-curve analysis of neural network and linear stochastic estimation for fluid flow problems2021

    • Author(s)
      T. Nakamura, K. Fukami, and K. Fukagata
    • Organizer
      16th U.S. National Congress on Computational Mechanics
    • Related Report
      2021 Annual Research Report
    • Int'l Joint Research
  • [Presentation] Toward machine learning based control of turbulence2021

    • Author(s)
      K. Fukagata
    • Organizer
      International Congress of Theoretical and Applied Mechanics (25th ICTAM)
    • Related Report
      2021 Annual Research Report
    • Int'l Joint Research / Invited
  • [Presentation] Extracting nonlinear dynamics of low-dimensionalized flows2021

    • Author(s)
      K. Fukami, T. Murata, and K. Fukagata
    • Organizer
      International Congress of Theoretical and Applied Mechanics (25th ICTAM)
    • Related Report
      2021 Annual Research Report
    • Int'l Joint Research
  • [Presentation] Demonstration of machine learning-based reduced order modeling using unsteady flows around bluff bodies with various shapes2021

    • Author(s)
      K. Hasegawa, K. Fukami, and K. Fukagata
    • Organizer
      International Congress of Theoretical and Applied Mechanics (25th ICTAM)
    • Related Report
      2021 Annual Research Report
    • Int'l Joint Research
  • [Presentation] Applications of CNN autoencoders to fluid mechanics problems2021

    • Author(s)
      K. Fukagata
    • Organizer
      RIMS Workshop, Mathematical methods for the studies of flow, shape, and dynamics
    • Related Report
      2021 Annual Research Report
    • Int'l Joint Research / Invited
  • [Presentation] Data-driven reduced-order modeling for turbulent flow forecast: neural networks and sparse regressions2021

    • Author(s)
      T. Nakamura, K. Fukami, and K. Fukagata
    • Organizer
      Mechanistic Machine Learning and Digital Twins for Computational Science, Engineering & Technology (MMLDT-CSET 2021)
    • Related Report
      2021 Annual Research Report
    • Int'l Joint Research
  • [Presentation] Towards practical uses of supervised neural networks for fluid flow regressions2021

    • Author(s)
      M. Morimoto, K. Fukami, K. Zhang, and K. Fukagata
    • Organizer
      Mechanistic Machine Learning and Digital Twins for Computational Science, Engineering & Technology (MMLDT-CSET 2021)
    • Related Report
      2021 Annual Research Report
    • Int'l Joint Research
  • [Presentation] Convolutional neural network-based three-dimensional fluid flow recovery from two-dimensional sectional data with super-resolution-based data augmentation2021

    • Author(s)
      M. Matsuo, T. Nakamura, M. Morimoto, K. Fukami, and K. Fukagata
    • Organizer
      Mechanistic Machine Learning and Digital Twins for Computational Science, Engineering & Technology (MMLDT-CSET 2021)
    • Related Report
      2021 Annual Research Report
    • Int'l Joint Research
  • [Presentation] Latent space-based feedback control design: Machine-learning-based reduced order modeling of unsteady fluid flows2021

    • Author(s)
      S. Kanehira, K. Fukami, K. Hasegawa, T. Nakamura, M. Morimoto, and K. Fukagata
    • Organizer
      Mechanistic Machine Learning and Digital Twins for Computational Science, Engineering & Technology (MMLDT-CSET 2021)
    • Related Report
      2021 Annual Research Report
    • Int'l Joint Research
  • [Presentation] Global field reconstruction from sparse sensors with Voronoi tessellation-assisted convolutional neural network2021

    • Author(s)
      K. Fukami, R. Maulik, N. Ramachandra, K. Fukagata, and K. Taira
    • Organizer
      Remote Colloquium on Vortex Dominated Flows (ReCovor)
    • Related Report
      2021 Annual Research Report
    • Int'l Joint Research
  • [Presentation] Visualization of nonlinear modal structures for three-dimensional unsteady fluid flows with customized decoder design2021

    • Author(s)
      K. Hasegawa, K. Fukami, and K. Fukagata
    • Organizer
      Machine Learning and the Physical Sciences, Workshop at the 35th Conference on Neural Information Processing Systems (NeurIPS)
    • Related Report
      2021 Annual Research Report
    • Int'l Joint Research
  • [Presentation] 畳み込みニューラルネットワークの流体解析への応用2021

    • Author(s)
      深潟 康二
    • Organizer
      自動車技術会 第9回CFD技術部門委員会
    • Related Report
      2021 Annual Research Report
    • Invited
  • [Presentation] 潜在ベクトルとスパース回帰を用いた流れ場時系列解析:データ駆動型流れ制御に向けて2021

    • Author(s)
      深見 開,村田 高彬,張 凱,兼平 昇英,深潟 康二
    • Organizer
      日本機械学会2021年度年次大会
    • Related Report
      2021 Annual Research Report
  • [Presentation] 畳み込みニューラルネットワークを用いたスパースセンサからの流れ場状態推定2021

    • Author(s)
      中村 太一,深見 開,深潟 康二
    • Organizer
      日本機械学会2021年度年次大会
    • Related Report
      2021 Annual Research Report
  • [Presentation] 畳み込みニューラルネットワークに基づく非線形モード分解の3次元流れへの応用2021

    • Author(s)
      長谷川 一登,深見 開,深潟 康二
    • Organizer
      日本機械学会2021年度年次大会
    • Related Report
      2021 Annual Research Report
  • [Presentation] 流動場の空間再構築のための階層型ニューラルネットワーク2021

    • Author(s)
      守矢 直樹,森本 将生,深見 開,長谷川 一登,深潟 康二
    • Organizer
      日本流体力学会年会2021
    • Related Report
      2021 Annual Research Report
  • [Presentation] 流体解析への機械学習の応用2021

    • Author(s)
      深潟 康二
    • Organizer
      日本応用数理学会 ものづくり企業に役立つ応用数理手法の研究会
    • Related Report
      2021 Annual Research Report
    • Invited
  • [Presentation] 流体力学における機械学習の応用2021

    • Author(s)
      深潟 康二
    • Organizer
      東大原子力セミナー
    • Related Report
      2021 Annual Research Report
    • Invited
  • [Presentation] Application of convolutional neural networks to fluid mechanics problems: toward machine-learning-assisted flow control2021

    • Author(s)
      深潟 康二
    • Organizer
      IUTAM Subcommittee meeting
    • Related Report
      2021 Annual Research Report
    • Invited
  • [Presentation] 遷移境界層流れにおけるスパースセンサからのCNNベース大域場再構築2021

    • Author(s)
      中村 太一, 深見 開, 深潟 康二
    • Organizer
      第35回数値流体力学シンポジウム
    • Related Report
      2021 Annual Research Report
  • [Presentation] ニューラルネットワークに基づく流れ場推定におけるモデルの不確かさの評価2021

    • Author(s)
      森本 将生, 深見 開, Romit Maulik, Ricardo Vinuesa, 深潟 康二
    • Organizer
      第35回数値流体力学シンポジウム
    • Related Report
      2021 Annual Research Report
  • [Presentation] 深層学習ベースの非定常流れ推定:振動円柱後流における非線形畳み込み2021

    • Author(s)
      千田 晃, 中村 太一, 張 凱, 深潟 康二
    • Organizer
      第35回数値流体力学シンポジウム
    • Related Report
      2021 Annual Research Report
  • [Presentation] バンプを持つチャネル乱流に対するフィードバック制御の直接数値シミュレーション2021

    • Author(s)
      大河内 祐輔, 難波江 佑介, 深潟 康二
    • Organizer
      第35回数値流体力学シンポジウム
    • Related Report
      2021 Annual Research Report
  • [Presentation] Numerical Investigation of Active Anti-Icing Technology using Electro-Thermal Effect of CFRP2021

    • Author(s)
      Y. Gao, K. Fukudome, M. Yamamoto, T. Mizuno, and M. Suzuki
    • Organizer
      ASIAN CONGRESS ON GAS TURBINES 2020 (ACGT 2020)
    • Related Report
      2021 Annual Research Report
    • Int'l Joint Research
  • [Presentation] Prediction of Secondary Ice Particle Size for Ice Crystal Icing using MPS Method2021

    • Author(s)
      K. Hirose, K. Fukudome, and M. Yamamoto
    • Organizer
      The VII International Conference on Particle-Based Methods (PARTICLES 2021)
    • Related Report
      2021 Annual Research Report
    • Int'l Joint Research
  • [Presentation] Accuracy Verification of a Rupture Prediction Equation for Unruptured Cerebral Aneurysms2021

    • Author(s)
      S. Sunami, H. Takao, S. Fujimura, Y. Uchiyama, Y. Yamanaka, T. Ishibashi, K. Fukudome, Y. Murayama, and M. Yamamoto
    • Organizer
      43rd Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC 2021)
    • Related Report
      2021 Annual Research Report
    • Int'l Joint Research
  • [Presentation] 氷粒子付着判定とマルチショットを導入したアイスクリスタル着氷の数値的研究2021

    • Author(s)
      稲川美緒,福留功二,山本誠
    • Organizer
      第49回日本ガスタービン学会定期講演会
    • Related Report
      2021 Annual Research Report
  • [Presentation] CFD解析を用いた未破裂脳動脈瘤に対する破裂予測の実用性に関する研究2021

    • Author(s)
      角南昭太, 高尾洋之,藤村宗一郎,内山祐也, 山中悠真,内川隼杜,湯澤和也,葛西智基,石橋敏寛,福留功二,山本誠, 村山雄一
    • Organizer
      第37回NPO法人日本脳神経血管内治療学会学術総会
    • Related Report
      2021 Annual Research Report
  • [Presentation] 2 次粒径予測に向けた氷粒子崩壊モデルの開発2021

    • Author(s)
      廣瀬幸一郎, 福留功二,山本誠
    • Organizer
      第35回数値流体力学シンポジウム
    • Related Report
      2021 Annual Research Report
  • [Presentation] E-MPS法を用いた過冷却液滴凝固の数値シミュレーション2021

    • Author(s)
      河野結香, 福留功二,山本誠
    • Organizer
      第35回数値流体力学シンポジウム
    • Related Report
      2021 Annual Research Report
  • [Presentation] CFRP の電熱効果を用いた能動的防氷技術に関する数値的研究2021

    • Author(s)
      高羽欣, 福留功二,山本誠, 水野拓哉, 鈴木正也
    • Organizer
      第35回数値流体力学シンポジウム
    • Related Report
      2021 Annual Research Report
  • [Presentation] Drag Reduction Effect of Arbitrarily Wavy Riblets in Turbulent Channel Flow by DNS2021

    • Author(s)
      A. Yanai, A. Mitsuishi, T. Shimura, K. Iwamoto and A. Murata
    • Organizer
      8th Asian Symposium on Computational Heat Transfer and Fluid Flow
    • Related Report
      2021 Annual Research Report
    • Int'l Joint Research
  • [Presentation] Wall Turbulence Control for Drag Reduction and Heat Transfer Enhancement Based on Biomimetics and Deep Learning2021

    • Author(s)
      K. Iwamoto
    • Organizer
      8th Asian Symposium on Computational Heat Transfer and Fluid Flow
    • Related Report
      2021 Annual Research Report
    • Invited
  • [Presentation] 汎化性能向上を目的としたTime delay NN-RNNモデルによる円管内脈動乱流の摩擦抵抗の予測2021

    • Author(s)
      松原 一憲,光石 暁彦,志村 敬彬,岩本 薫,村田 章
    • Organizer
      日本流体力学会年会2021
    • Related Report
      2021 Annual Research Report
  • [Presentation] チャネル乱流の過去と未来の壁面計測データが大規模構造推定に与える影響2021

    • Author(s)
      Z. Liu, Y. Hasegawa
    • Organizer
      日本流体力学会
    • Related Report
      2021 Annual Research Report
  • [Presentation] チャネル乱流の最適制御におけるレイノルズ数効果の調査2021

    • Author(s)
      伊藤 宗嵩, 長谷川 洋介
    • Organizer
      日本流体力学会
    • Related Report
      2021 Annual Research Report
  • [Presentation] 壁乱流制御のための強化学習におけるハイパーパラメータの影響2021

    • Author(s)
      園田 隆博, Z. Liu, 伊藤 宗嵩, 長谷川 洋介
    • Organizer
      日本流体力学会
    • Related Report
      2021 Annual Research Report
  • [Presentation] OpenFOAMを用いた熱交換器設計のための多目的トポロジー最適化2021

    • Author(s)
      D. Chen, 伊藤 宗嵩, 亀谷 幸憲, 長谷川 洋介
    • Organizer
      日本流体力学会
    • Related Report
      2021 Annual Research Report
  • [Presentation] 4次元変分法を用いたダクト内円柱周り流れ場推定における計測領域の影響2021

    • Author(s)
      細矢 太一, 伊藤 宗嵩, 亀谷 幸憲, 塚原 隆裕, 長谷川 洋介
    • Organizer
      日本流体力学会
    • Related Report
      2021 Annual Research Report
  • [Presentation] 深層カーネルを用いた物理法則を考慮したガウス過程によるスカラー源と濃度場の推定2021

    • Author(s)
      L. Yang, D. Henzel., G. Karniadakis, 長谷川 洋介
    • Organizer
      日本流体力学会
    • Related Report
      2021 Annual Research Report
  • [Presentation] 物理法則を考慮した深層学習を用いたスカラー源と濃度場推定のためのセンサー配置の能動学習2021

    • Author(s)
      D. Henzel, Z. Liu, G. Karniadakis, 長谷川 洋介
    • Organizer
      日本流体力学会
    • Related Report
      2021 Annual Research Report
  • [Presentation] 高精度インクジェット・プリンティングのための駆動波形のベイズ最適化2021

    • Author(s)
      H. Wang, 長谷川 洋介
    • Organizer
      日本流体力学会
    • Related Report
      2021 Annual Research Report
  • [Presentation] 人工知能速度測定を用いたゼブラフィッシュ後脳基底動脈の血流推定2021

    • Author(s)
      V. Kumar, S. Cai, 中倉 満帆,中嶋 洋行,G. Karniadakis, 長谷川 洋介
    • Organizer
      日本流体力学会
    • Related Report
      2021 Annual Research Report
  • [Presentation] 強化学習を用いた摩擦抵抗低減のための壁乱流制御則の開発2021

    • Author(s)
      園田 隆博, Z. Liu, 伊藤 宗嵩, 長谷川 洋介
    • Organizer
      日本機械学会2021年度 年次大会
    • Related Report
      2021 Annual Research Report
  • [Presentation] Scalar-source estimation of turbulent mass diffusion using machine learning2021

    • Author(s)
      T. Tsukahara
    • Organizer
      The 8th International Workshop on Fluid Flow, Heat Transfer and Turbulent Drag Reduction (IWFHT2021)
    • Related Report
      2021 Annual Research Report
    • Invited
  • [Presentation] Scalar-source estimation of turbulent mass diffusion using machine learning2021

    • Author(s)
      T. Tsukahara
    • Organizer
      IISc-TUS Joint Workshop in Data Sciences
    • Related Report
      2021 Annual Research Report
    • Invited
  • [Presentation] Regression-type inverse estimation by CNN to identify a scalar source in turbulent channel flow2021

    • Author(s)
      T. Kurihara, T. Ishigami, and T. Tsukahara
    • Organizer
      The 8th Asian Symposium on Computational Heat Transfer and Fluid Flow (ASCHT2021)
    • Related Report
      2021 Annual Research Report
  • [Presentation] 粘弾性流体乱流におけるU-Netを用いた構成方程式の代理モデル構築2021

    • Author(s)
      田代 雅哉,塚原 隆裕
    • Organizer
      日本機械学会 第99期 流体工学部門講演会
    • Related Report
      2021 Annual Research Report
  • [Presentation] 畳み込みニューラルネットワークを用いた断面情報からの壁乱流場推定2021

    • Author(s)
      下田 瑶祐,福島 直哉
    • Organizer
      日本機械学会 第99期流体工学部門講演会
    • Related Report
      2021 Annual Research Report
  • [Presentation] 畳み込み LSTM を用いた深層学習による非定常流れの予測2021

    • Author(s)
      下田 瑶祐,福島 直哉
    • Organizer
      日本流体力学会年会 2021
    • Related Report
      2021 Annual Research Report
  • [Presentation] Blowing and suction control based on deep reinforcement learning for drag reduction in fully developed turbulent channel flow2021

    • Author(s)
      R. Aoki, H. Mamori
    • Organizer
      25th International Congress of Theoretical and Applied Mechanics
    • Related Report
      2021 Annual Research Report
    • Int'l Joint Research
  • [Presentation] 吹出し・吸込みフィードバック制御による低レイノルズ数平行平板間流の熱伝達促進2021

    • Author(s)
      青木 良太,守 裕也,宮嵜 武
    • Organizer
      日本流体力学会 年会2021
    • Related Report
      2021 Annual Research Report
  • [Remarks] 慶大・深潟研究室内「機械学習のページ」

    • URL

      https://kflab.jp/ja/index.php?21H05007

    • Related Report
      2023 Annual Research Report 2022 Annual Research Report 2021 Annual Research Report
  • [Remarks] "ML Project" in Keio Univ. Fukagata Lab.

    • URL

      https://kflab.jp/en/index.php?21H05007

    • Related Report
      2023 Annual Research Report 2022 Annual Research Report 2021 Annual Research Report

URL: 

Published: 2021-07-08   Modified: 2025-06-20  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi