• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Weak Arf closures of rings versus their strict closures

Research Project

Project/Area Number 21K03211
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeMulti-year Fund
Section一般
Review Section Basic Section 11010:Algebra-related
Research InstitutionMeiji University

Principal Investigator

後藤 四郎  明治大学, 研究・知財戦略機構(生田), 研究推進員(客員研究員) (50060091)

Co-Investigator(Kenkyū-buntansha) 居相 真一郎  北海道教育大学, 教育学部, 准教授 (50333125)
松岡 直之  明治大学, 理工学部, 専任准教授 (80440155)
Project Period (FY) 2021 – 2022
Project Status Discontinued (Fiscal Year 2022)
Budget Amount *help
¥4,160,000 (Direct Cost: ¥3,200,000、Indirect Cost: ¥960,000)
Fiscal Year 2023: ¥1,300,000 (Direct Cost: ¥1,000,000、Indirect Cost: ¥300,000)
Fiscal Year 2022: ¥1,300,000 (Direct Cost: ¥1,000,000、Indirect Cost: ¥300,000)
Fiscal Year 2021: ¥1,560,000 (Direct Cost: ¥1,200,000、Indirect Cost: ¥360,000)
Keywordscommutative algebra / Cohen-Macaulay環 / Arf環 / Arf環に関するZariski予想 / 弱Arf環 / strict closure / 弱Arf closure / 数値半群環 / Cohen-Macaulay 環 / Arf 環 / Arf 環に関するZariski予想 / 弱 Arf 環 / weakly Arf closure / 可換環論 / 環のstrict closure
Outline of Research at the Start

Arf環論を一般次元の(必ずしもNoether環ではない)環に拡張することを目指す。1次元のCohen-Macaulay半局所環Rについては,Rがstrictly closedなら,Rは弱Arf環であり(O. Zariskiによる),Rが体を含むなら逆も正しい(J. Lipman)。また,Rがstrictly closedなら,Rは弱Arf環である。これらの事実を踏まえ,本研究では3年間で下記課題に対し一定の成果を挙げることを目指す。① 環のstrict closednessと弱Arf性の関係を明らかにする。②弱Arf環およびstrictly closed環の汎在性を様々な文脈の中で実証する。

Outline of Annual Research Achievements

1971年にJ. Lipmanによって提唱されたArf環は1次元Cohen-Macaulay(以下C-Mと略す)半局所環に限定されていたが、研究成果[1]によりこのArf環の理論を1次元ともC-Mとも半局所環とも限らない一般のNoether環の理論として弱Arf環論へと拡張した。1次元C-M半局所環については、環のstrict closed性とArf性が同値であるというO. Zariskiによる予想があり、1971年にはZariski自身とLipmanによって体を含む環については肯定的に解かれていた。本研究により、50年の永きに渡り未解決であったこの予想を、完全に一般的に正しいことを証明するに至った。従って、Arf環の概念を適切に高次元化し、「高次元のArf環論」の展開が期待されるのである。
その理論の整備の第一歩として、具体的な環構造のstrict closed性や弱Arf性解析が求められる。例えば、与えられた環の拡大環で、Strictly closedであるような環や、弱Arf環となるようなものがどのように得られるかも強い興味の対象である。研究成果[2], [3], [4]はその興味を基盤として得られた成果である。strict closureや弱Arf closureの理論構築の礎となることが期待される。
【研究成果】[1]E. Celikbas, 0. Celikbas, C. Ciupercă, N. Endo, S. Goto, R. lsobe, and N. Matsuoka, On the ubiquity of Arf rings, J. Comm. Alg. (to appear). [2]N. Endo and S. Goto, COnstruction of strictly closed rings, Proc. Amer. Math. So., 150(2022), 119-129. [3]N. Endo, S. Goto, and R. lsobe, Topics on strict closure of rings, Res. Math. Sci., 8, Vol. 55(2021). [4] N. Endo, S. Goto, S.-i. iai, and N. Matsuoka, On the weakly Arf(S_2)-ifications of Noetherian rings, J. Comm. Alg. (to appear).

Report

(2 results)
  • 2022 Annual Research Report
  • 2021 Research-status Report
  • Research Products

    (15 results)

All 2022 2021 Other

All Int'l Joint Research (1 results) Journal Article (12 results) (of which Int'l Joint Research: 7 results,  Peer Reviewed: 7 results) Presentation (2 results)

  • [Int'l Joint Research] West Virginia University/North Dakota State University(米国)

    • Related Report
      2021 Research-status Report
  • [Journal Article] On the ubiquity of Arf rings2022

    • Author(s)
      E. Celikbas, O. Celikbas, C. Ciupercă, N. Endo, S. Goto, R. Isobe, N. Matsuoka
    • Journal Title

      Journal of Commutative Algebra

    • Related Report
      2022 Annual Research Report
    • Peer Reviewed / Int'l Joint Research
  • [Journal Article] On the ubiquity of Arf rings2022

    • Author(s)
      E. Celikbas, O. Celikbas, C. Ciuperc\u{a}, N. Endo, S. Goto, R. Isobe, N. Matsuoka
    • Journal Title

      J. Comm. Alg.

      Volume: -

    • Related Report
      2021 Research-status Report
    • Peer Reviewed / Int'l Joint Research
  • [Journal Article] On the weakly Arf (S_2)-ifications of Noetherian rings2022

    • Author(s)
      N. Endo, S. Goto, S.-i. Iai, N. Matsuoka
    • Journal Title

      arxiv.org/abs/2204.12132

      Volume: -

    • Related Report
      2021 Research-status Report
    • Int'l Joint Research
  • [Journal Article] Construction of strictly closed rings2021

    • Author(s)
      E. Naoki, S. Goto
    • Journal Title

      Proceedings of the American Mathematical Society

      Volume: 150 Issue: 01 Pages: 119-129

    • DOI

      10.1090/proc/15659

    • Related Report
      2021 Research-status Report
    • Peer Reviewed
  • [Journal Article] Topics on strict closure of rings2021

    • Author(s)
      Endo Naoki、Goto Shiro、Isobe Ryotaro
    • Journal Title

      Research in the Mathematical Sciences

      Volume: 8 Issue: 4

    • DOI

      10.1007/s40687-021-00292-1

    • Related Report
      2021 Research-status Report
    • Peer Reviewed
  • [Journal Article] Almost Gorenstein rings arising from fiber products2021

    • Author(s)
      Endo Naoki、Goto Shiro、Isobe Ryotaro
    • Journal Title

      Canadian Mathematical Bulletin

      Volume: 64 Issue: 2 Pages: 383-400

    • DOI

      10.4153/s000843952000051x

    • Related Report
      2021 Research-status Report
    • Peer Reviewed
  • [Journal Article] A criterion for reflexivity of modules2021

    • Author(s)
      N. Endo, S. Goto
    • Journal Title

      arxiv.org/abs/2112.02258

      Volume: -

    • Related Report
      2021 Research-status Report
    • Int'l Joint Research
  • [Journal Article] When are the rings $I:I$ Gorenstein?2021

    • Author(s)
      N. Endo, S. Goto, S.-i. Iai, N. Matsuoka
    • Journal Title

      arXiv:2111.13338

      Volume: -

    • Related Report
      2021 Research-status Report
    • Int'l Joint Research
  • [Journal Article] Ulrich ideals in the ring $k[[t^5, t^{11}]]$2021

    • Author(s)
      N. Endo, S. Goto, S.-i. Iai, N. Matsuoka
    • Journal Title

      arxiv.org/abs/2111.01085

      Volume: -

    • Related Report
      2021 Research-status Report
    • Int'l Joint Research
  • [Journal Article] Ulrich ideals in numerical semigroup rings of small multiplicity2021

    • Author(s)
      N. Endo, S. Goto
    • Journal Title

      arxiv.org/abs/2111.00498

      Volume: -

    • Related Report
      2021 Research-status Report
    • Int'l Joint Research
  • [Journal Article] When are the rings $I:I$ Gorenstein?

    • Author(s)
      Naoki Endo, Shiro Goto, Shin-ichiro Iai, Naoyuki Matsuoka
    • Journal Title

      Communications in Algebra

    • Related Report
      2022 Annual Research Report
    • Peer Reviewed
  • [Journal Article] On the weakly Arf (S_2)-ifications of Noetherian rings

    • Author(s)
      Noki Endo, Shiro Goto, Shin-ichiro Iai, Naoyuki Matsuoka
    • Journal Title

      Journal of Commutative Algebra

    • Related Report
      2022 Annual Research Report
    • Peer Reviewed
  • [Presentation] Reflexive modules over the endomorphism algebras of reflexive trace ideals2022

    • Author(s)
      遠藤直樹, 後藤四郎
    • Organizer
      日本数学会秋季年会
    • Related Report
      2022 Annual Research Report
  • [Presentation] Reflexive modules over the endomorphism algebras of reflexive trace ideals2022

    • Author(s)
      遠藤直樹, 後藤四郎
    • Organizer
      第43回可換環論シンポジウム
    • Related Report
      2022 Annual Research Report

URL: 

Published: 2021-04-28   Modified: 2024-03-28  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi