• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

変形ドナルドソン・トーマス接続のモジュライ空間の性質の解明

Research Project

Project/Area Number 21K03231
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeMulti-year Fund
Section一般
Review Section Basic Section 11020:Geometry-related
Research InstitutionOsaka Metropolitan University (2022-2023)
Osaka City University (2021)

Principal Investigator

河井 公大朗  大阪公立大学, 数学研究所, 特別研究員 (60728343)

Project Period (FY) 2021-04-01 – 2025-03-31
Project Status Granted (Fiscal Year 2023)
Budget Amount *help
¥4,160,000 (Direct Cost: ¥3,200,000、Indirect Cost: ¥960,000)
Fiscal Year 2024: ¥1,040,000 (Direct Cost: ¥800,000、Indirect Cost: ¥240,000)
Fiscal Year 2023: ¥1,040,000 (Direct Cost: ¥800,000、Indirect Cost: ¥240,000)
Fiscal Year 2022: ¥1,040,000 (Direct Cost: ¥800,000、Indirect Cost: ¥240,000)
Fiscal Year 2021: ¥1,040,000 (Direct Cost: ¥800,000、Indirect Cost: ¥240,000)
Keywords極小接続 / dDT接続 / Liouville 型定理 / 変形ドナルドソン・トーマス接続 / ミラー対称性 / associative 部分多様体 / Cayley部分多様体 / G2多様体
Outline of Research at the Start

コンパクト性定理(ある汎関数が一様有界な列の部分列が、有限個の点を除いて収束し、その有限個の点では「バブル」が生じるというような主張)を示したい。最初の汎関数の設定が一番の問題だが、類似の場合から、汎関数の候補はいくつかある。これらが基本的な性質をみたすか調べ、類似の場合の手法を応用しつつ定理の証明を目指す。
また部分多様体の通常の体積の「ミラー」として、接続の「体積」が導入できる。この勾配流(ミラーMCF)の研究を行いたい。特にG2, Spin(7)-dDT 接続の安定性、つまりそれらの十分近くからミラーMCFを流すとG2, Spin(7)-dDT 接続に収束するか調べる。

Outline of Annual Research Achievements

昨年度に引き続き、極小部分多様体の「ミラー」と思える極小接続の研究を行った。以前示した極小接続の単調性が成り立つための条件をより明確化した。そしてG2多様体のcalibrated部分多様体の「ミラー」であるG2-dDT接続に対して、より強い単調性公式を得た。
また極小接続の定義式の形式的な large radius limit がYang-Mills接続のそれになることを示し、それを用いて、計量が「十分大きい」ときに極小接続の存在を示した。そしてこれらをまとめて、2編の論文にしarXivに投稿した。

Current Status of Research Progress
Current Status of Research Progress

2: Research has progressed on the whole more than it was originally planned.

Reason

単調性公式はコンパクト性定理、特にG2-dDT接続の数え上げのためには重要であり、G2-dDT接続に対してより強い結果を得ることができたため。

Strategy for Future Research Activity

極小接続は「ミラー」体積汎関数の臨界点として現れる。その第二変分公式を調べ、部分多様体の場合と比較する。
また近年、G2多様体のcalibrated(associative)部分多様体の例が、Joyceの構成したコンパクトG2多様体の中に構成された。G2-dDT接続は、associative部分多様体の「ミラー」であり、またassociative部分多様体と類似した性質を多く持つことから、類似の方法でG2-dDT接続の例の構成が可能ではと目論んでいる。

Report

(3 results)
  • 2023 Research-status Report
  • 2022 Research-status Report
  • 2021 Research-status Report
  • Research Products

    (25 results)

All 2024 2023 2022 2021

All Journal Article (4 results) (of which Peer Reviewed: 4 results,  Open Access: 3 results) Presentation (21 results) (of which Int'l Joint Research: 15 results,  Invited: 1 results)

  • [Journal Article] Deformation Theory of Deformed Hermitian Yang?Mills Connections and Deformed Donaldson?Thomas Connections2022

    • Author(s)
      Kawai Kotaro、Yamamoto Hikaru
    • Journal Title

      The Journal of Geometric Analysis

      Volume: 32 Issue: 5

    • DOI

      10.1007/s12220-022-00898-z

    • Related Report
      2022 Research-status Report
    • Peer Reviewed / Open Access
  • [Journal Article] Mirror of volume functionals on manifolds with special holonomy2022

    • Author(s)
      Kawai Kotaro、Yamamoto Hikaru
    • Journal Title

      Advances in Mathematics

      Volume: 405 Pages: 108515-108515

    • DOI

      10.1016/j.aim.2022.108515

    • Related Report
      2022 Research-status Report
    • Peer Reviewed
  • [Journal Article] Deformation Theory of Deformed Donaldson?Thomas Connections for $${\text {Spin}(7)}$$-manifolds2021

    • Author(s)
      Kawai Kotaro、Yamamoto Hikaru
    • Journal Title

      The Journal of Geometric Analysis

      Volume: 31 Issue: 12 Pages: 12098-12154

    • DOI

      10.1007/s12220-021-00712-2

    • Related Report
      2021 Research-status Report
    • Peer Reviewed / Open Access
  • [Journal Article] The real Fourier?Mukai transform of Cayley cycles2021

    • Author(s)
      Kawai Kotaro、Yamamoto Hikaru
    • Journal Title

      Pure and Applied Mathematics Quarterly

      Volume: 17 Issue: 5 Pages: 1861-1898

    • DOI

      10.4310/pamq.2021.v17.n5.a7

    • Related Report
      2021 Research-status Report
    • Peer Reviewed / Open Access
  • [Presentation] Mirror of minimal submanifolds and a monotonicity formula2024

    • Author(s)
      Kotaro Kawai
    • Organizer
      The 2023 Annual International Congress of Chinese Mathematicians
    • Related Report
      2023 Research-status Report
    • Int'l Joint Research
  • [Presentation] Manifolds with exceptional holonomy and mirrors of their submanifolds2024

    • Author(s)
      Kotaro Kawai
    • Organizer
      Tsinghua-Tokyo workshop on Calabi-Yau
    • Related Report
      2023 Research-status Report
    • Int'l Joint Research
  • [Presentation] Introduction to mirror of submanifolds2024

    • Author(s)
      Kotaro Kawai
    • Organizer
      Geometry-Topology Winter School
    • Related Report
      2023 Research-status Report
    • Int'l Joint Research
  • [Presentation] Mirror of minimal submanifolds and a monotonicity formula2024

    • Author(s)
      Kotaro Kawai
    • Organizer
      The 4th International Conference on Surfaces, Analysis, and Numerics in Differential Geometry
    • Related Report
      2023 Research-status Report
    • Int'l Joint Research
  • [Presentation] Mirror of submanifolds and special holonomy2023

    • Author(s)
      Kotaro Kawai
    • Organizer
      Tsinghua University Geometry Seminar
    • Related Report
      2023 Research-status Report
    • Int'l Joint Research
  • [Presentation] Mirror of submanifolds and special holonomy2023

    • Author(s)
      Kotaro Kawai
    • Organizer
      University of Stuttgart Differential geometry seminar
    • Related Report
      2023 Research-status Report
    • Int'l Joint Research
  • [Presentation] 極小部分多様体のミラーと単調性公式2023

    • Author(s)
      河井 公大朗
    • Organizer
      東北大学幾何セミナー
    • Related Report
      2023 Research-status Report
  • [Presentation] Deformed Donaldson-Thomas connections2023

    • Author(s)
      Kotaro Kawai
    • Organizer
      Satellite conference on geometric analysis
    • Related Report
      2023 Research-status Report
    • Int'l Joint Research
  • [Presentation] Deformed Donaldson-Thomas connections2023

    • Author(s)
      Kotaro Kawai
    • Organizer
      第8回日中幾何学研究集会
    • Related Report
      2023 Research-status Report
    • Int'l Joint Research
  • [Presentation] Mirror of submanifolds and special holonomy2023

    • Author(s)
      Kotaro Kawai
    • Organizer
      北京師範大学セミナー
    • Related Report
      2023 Research-status Report
    • Int'l Joint Research
  • [Presentation] 例外型ホロノミー群をもつ多様体およびその部分多様体のミラー2023

    • Author(s)
      河井 公大朗
    • Organizer
      日本数学会2023年度秋季総合分科会
    • Related Report
      2023 Research-status Report
    • Invited
  • [Presentation] 極小部分多様体のミラーと単調性公式2023

    • Author(s)
      河井 公大朗
    • Organizer
      筑波大学微分幾何学セミナー
    • Related Report
      2023 Research-status Report
  • [Presentation] Mirror of minimal submanifolds and a monotonicity formula2023

    • Author(s)
      Kotaro Kawai
    • Organizer
      Tsinghua University Geometry Seminar
    • Related Report
      2023 Research-status Report
    • Int'l Joint Research
  • [Presentation] deformed Donaldson-Thomas 接続について2022

    • Author(s)
      河井 公大朗
    • Organizer
      RIMS 共同研究「部分多様体論と幾何解析の新展開」
    • Related Report
      2022 Research-status Report
  • [Presentation] Mirror of submanifolds and special holonomy2022

    • Author(s)
      Kotaro Kawai
    • Organizer
      Beijing Institute of Technology Seminar
    • Related Report
      2022 Research-status Report
    • Int'l Joint Research
  • [Presentation] Overview of exceptional geometry2022

    • Author(s)
      Kotaro Kawai
    • Organizer
      Tsinghua University Geometry Seminar
    • Related Report
      2022 Research-status Report
    • Int'l Joint Research
  • [Presentation] Construction of nearly Kahler manifolds by Foscolo and Haskins2022

    • Author(s)
      Kotaro Kawai
    • Organizer
      Tsinghua University Geometry Seminar
    • Related Report
      2022 Research-status Report
    • Int'l Joint Research
  • [Presentation] Deformed Donaldson-Thomas connections2022

    • Author(s)
      Kotaro Kawai
    • Organizer
      Differential Geometry and Integrable Systems - Mathematics of Symmetry, Stability and Moduli -
    • Related Report
      2021 Research-status Report
    • Int'l Joint Research
  • [Presentation] Spin(7) 多様体に対する変形ドナルドソン・トーマス接続の変形理論2021

    • Author(s)
      河井 公大朗
    • Organizer
      日本数学会2021 年度秋季総合分科会
    • Related Report
      2021 Research-status Report
  • [Presentation] 体積汎関数のミラーとspecial holonomy2021

    • Author(s)
      河井 公大朗
    • Organizer
      日本数学会2021 年度秋季総合分科会
    • Related Report
      2021 Research-status Report
  • [Presentation] Deformed Donaldson-Thomas connections2021

    • Author(s)
      Kotaro Kawai
    • Organizer
      NCTS Seminar on Differential Geometry
    • Related Report
      2021 Research-status Report
    • Int'l Joint Research

URL: 

Published: 2021-04-28   Modified: 2024-12-25  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi