• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

準射影多様体上のケーラー・アインシュタイン計量の境界挙動と対数的標準束の正値性

Research Project

Project/Area Number 21K03232
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeMulti-year Fund
Section一般
Review Section Basic Section 11020:Geometry-related
Research InstitutionKogakuin University

Principal Investigator

菊田 伸  工学院大学, 教育推進機構(公私立大学の部局等), 准教授 (40736790)

Project Period (FY) 2021-04-01 – 2026-03-31
Project Status Granted (Fiscal Year 2023)
Budget Amount *help
¥3,380,000 (Direct Cost: ¥2,600,000、Indirect Cost: ¥780,000)
Fiscal Year 2025: ¥650,000 (Direct Cost: ¥500,000、Indirect Cost: ¥150,000)
Fiscal Year 2024: ¥780,000 (Direct Cost: ¥600,000、Indirect Cost: ¥180,000)
Fiscal Year 2023: ¥780,000 (Direct Cost: ¥600,000、Indirect Cost: ¥180,000)
Fiscal Year 2022: ¥520,000 (Direct Cost: ¥400,000、Indirect Cost: ¥120,000)
Fiscal Year 2021: ¥650,000 (Direct Cost: ¥500,000、Indirect Cost: ¥150,000)
Keywordsケーラー・アインシュタイン計量の体積増大度 / 対数的標準束の正値性の退化 / 境界の小平次元 / 一般化されたケーラー・アインシュタイン計量 / カラビ・ヤオ境界上のリッチ平坦計量 / ケーラー・アインシュタイン計量の境界に沿った留数 / ジーゲルモジュラー多様体のトロイダルコンパクト化 / トーラス・ファイブレーション / カラビ・ヤオ境界とリッチ平坦計量 / 小平次元 / ベルグマン核と計量の境界挙動 / トーラスファイブレーション / リッチ曲率が負のケーラー・アインシュタイン計量 / 境界に沿った留数 / 体積増大度
Outline of Research at the Start

本研究では, 凖射影代数多様体上において, 対数的標準束の正値性の境界上での退化という観点で, リッチ曲率が負のケーラー・アインシュタイン計量の境界挙動を解析する. そして体積増大度と境界の小平次元の関係を求め, また計量の境界に沿った留数が一般化されたケーラー・アインシュタイン計量に一致するかを明らかにすることが目標である. それには参考計量の構成や付随するモンジュ・アンペール方程式の解の減衰評価が鍵で, 境界近傍の構造やケーラー・リッチ流に対する解析の技術などを駆使して証明したい. 同時にジーゲルモジュラー多様体のトロイダルコンパクト化を考察することで, 具体例を供給することを考えている.

Outline of Annual Research Achievements

滑らかな準射影代数多様体上において, 対数的標準束の正値性の条件のもとで, リッチ曲率が負の概完備ケーラー・アインシュタイン計量が存在する(板東, Tian-Yau, 小林亮一). その正値性の退化度合いが計量の境界挙動へ及ぼす影響を決定することは興味深い問題である. その問題に答えを与えるため, 体積増大度予想「体積形式の対数部分の冪に境界の小平次元が関わる」, 留数予想「計量の留数が一般化ケーラー・アインシュタイン計量に一致する」という二つを研究代表者が提案した. それらを解決することが本研究の目的であり, 特に今年度は体積増大度予想を中心に考察した.
昨年度までに「境界がカラビ・ヤオならば最小体積増大度を持つ」ことを明らかにした. 今年度はこの逆の「最小体積増大度を持つならば境界はカラビ・ヤオである」の解明を目標に議論を進めた. 計量の境界における特異性が小さい場合は, 単純な計算によって成り立つことは分かるが, 一般の特異性の場合にはポテンシャル論を駆使しても解決することが出来なかった. この問題や「境界がカラビ・ヤオの場合は計量が完備であるか」という問題, そして留数予想などに類似の性質については, Fuらによって特異点の観点から調べられており, 彼らの論文も参考にしているが, 未だ解決の糸口は見出せていない.
更に, 最大もしくは最小小平次元の場合は, ケーラー・リッチ流による近似の手法で昨年度までに解決している. 今年度は中間小平次元の場合に解決を試みた. 実際に具体例であるジーゲル・モジュラー多様体については成立することが確認済みである. Tosatti-Weinkove-Yang, Tosatti-Zhangのケーラー・リッチ流の結果との類似性があると見込んでいるので, 彼らの証明方法を手掛かりにして考察したが, 解決には至らなかった.

Current Status of Research Progress
Current Status of Research Progress

3: Progress in research has been slightly delayed.

Reason

準射影代数多様体上の概完備ケーラー・アインシュタイン計量の留数または体積増大度を完全に決定することを目指している.
これまでの本研究課題での成果として, 「境界が一般型であることの体積増大度による特徴付け」, 「境界がカラビ・ヤオである場合の体積増大度の決定」, 「境界がアーベル多様体である場合のリスケールした留数の決定」, 「ジーゲル・モジュラー多様体のトロイダルコンパクト化に対する留数と体積形式の計算」をあげた. これらは昨年度1つの論文にまとめ, 雑誌に投稿したが, 何度かリジェクトされ, 現在も査読中である. 故に境界の小平次元が最大・最小である場合には, 目的の解決に近づいている. また中間小平次元の典型例であるジーゲル・モジュラー多様体のトロイダルコンパクト化上の計量の留数と体積増大度を具体的に計算できたことは, 中間小平次元の場合の予想の信憑性を高めたと見なせる.
一方で, 留数および体積増大度予想について, それ以上の発見は得られていない. 例えば, 計量の境界での振る舞いを解明するため, 境界がカラビ・ヤオであることと最小体積増大であることの同値性を証明し, 境界がカラビ・ヤオであることの体積増大度による特徴付けを得ようと挑戦した. ただ計量の境界における特異性が障害となって, そこをポテンシャル論を駆使して打破しようとしたが, 未だ解決に至っていない. 更に, 一般的な中間小平次元の設定でも予想している体積増大度を満たすことを示したいと考えていたが, それも叶わなかった. Tosatti-Weinkove-Yangなどのケーラー・リッチ流の結果を鑑みて, 類似性を見出すことを試みたが, 境界の特異ファイバーの処理がうまく出来ず, 証明を見出せていない. 特異ファイバーはカラビ・ヤオ境界のときには扱いやすいため, 同様の手法が成功した.

Strategy for Future Research Activity

上述の投稿論文において一般型境界の場合に成功したように, カラビ・ヤオ境界の場合に同様の特徴づけを行いたいと考えている. 証明には計量の境界における特異性を把握することが不可欠であるが, ポテンシャル論もしくは複素モンジュ・アンペール方程式の解の微分の評価などを駆使して取り組みたい. 更にカラビ・ヤオ境界の場合に,リスケールした留数がリッチ平坦計量に一致することを証明したいと考えている. 上述論文ではアーベル多様体の有限商の場合に証明できており, その場合には有限幾何をもつ. ただ一般にはそうでないため, 対応する複素モンジュ・アンペール方程式の解析の一般論が整備されていない.
また体積増大度と留数の予想を中間小平次元でも解決したい. 一般には境界の特異ファイバーの処理が難しいため, 特異ファイバーの存在しない状況で考察する予定である. Tosattiらによる, ケーラー・リッチ流の時間無限大の挙動の研究において発展された技法の中で, 有効なものを見つけ出すことを考えている. ケーラー・リッチ流による近似は, カラビ・ヤオ境界や一般型境界の場合に成功したように, 我々の境界挙動への証明を見出す可能性を秘めていると思われる.
一方で, 準射影代数多様体上の概完備ケーラー・アインシュタイン計量の性質を, 別の観点から理解することも目的解決の助けになると考え始めている. 例えば, 射影代数多様体上においては, 辻氏によってケーラー・アインシュタイン計量(とケーラー・リッチ流)がベルグマン核を用いた力学系を用いて構成できることが発見されている. これは複素領域でも成り立つ(Toの結果)が, 準射影代数多様体にはまだ拡張されていないため, それについて考察したい. 力学系の初期のベルグマン核には, ポアンカレ増大度を持つ重みを付けると成功するのではないかと目論んでいる.

Report

(3 results)
  • 2023 Research-status Report
  • 2022 Research-status Report
  • 2021 Research-status Report
  • Research Products

    (6 results)

All 2024 2023 2022

All Presentation (6 results) (of which Invited: 6 results)

  • [Presentation] ケーラー・アインシュタイン計量の境界挙動2024

    • Author(s)
      菊田伸
    • Organizer
      多分野交流会, 東京都立大学
    • Related Report
      2023 Research-status Report
    • Invited
  • [Presentation] Residue and volume growth of Kahler-Einstein metric over quasi-projective manifolds with boundary of maximal or minimal Kodaira dimension2023

    • Author(s)
      Kikuta Shin
    • Organizer
      Semiclassic seminar, University of Cologne
    • Related Report
      2023 Research-status Report
    • Invited
  • [Presentation] 境界がカラビ・ヤオの場合のケーラー・アインシュタイン体積形式の公式2023

    • Author(s)
      菊田伸
    • Organizer
      i セミナー
    • Related Report
      2022 Research-status Report
    • Invited
  • [Presentation] 境界の小平次元が最大・最小の場合のケーラー・アインシュタイン計量の体積増大度2023

    • Author(s)
      菊田伸
    • Organizer
      Workshop on Complex geometry in Osaka 2023
    • Related Report
      2022 Research-status Report
    • Invited
  • [Presentation] シーゲルモジュラー多様体上のベルグマン計量の境界挙動2022

    • Author(s)
      菊田伸
    • Organizer
      i セミナー
    • Related Report
      2022 Research-status Report
    • Invited
  • [Presentation] 対数的標準束の正値性の退化とケーラー・アインシュタイン計量の留数2022

    • Author(s)
      菊田伸
    • Organizer
      多変数関数論冬セミナー
    • Related Report
      2022 Research-status Report
    • Invited

URL: 

Published: 2021-04-28   Modified: 2024-12-25  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi