• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

特異性を持つ確率微分方程式の解析

Research Project

Project/Area Number 21K03272
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeMulti-year Fund
Section一般
Review Section Basic Section 12010:Basic analysis-related
Research InstitutionUniversity of the Ryukyus

Principal Investigator

林 正史  琉球大学, 理学部, 准教授 (90532549)

Project Period (FY) 2021-04-01 – 2025-03-31
Project Status Granted (Fiscal Year 2023)
Budget Amount *help
¥2,210,000 (Direct Cost: ¥1,700,000、Indirect Cost: ¥510,000)
Fiscal Year 2023: ¥650,000 (Direct Cost: ¥500,000、Indirect Cost: ¥150,000)
Fiscal Year 2022: ¥650,000 (Direct Cost: ¥500,000、Indirect Cost: ¥150,000)
Fiscal Year 2021: ¥910,000 (Direct Cost: ¥700,000、Indirect Cost: ¥210,000)
Keywords確率過程論 / 確率微分方程式 / 無限分解可能分布 / 確率解析 / マルコフ連鎖 / 数値計算
Outline of Research at the Start

株価の変動や溶媒中の微粒子の運動など、社会科学や自然科学に現れる不規則な現象には、常微分方程式では記述できないものが数多く存在する. このような不規則な現象の時間発展を考察の対象とするものが確率微分方程式の理論である. 確率微分方程式は理論とその応用がさまざまな研究者によって研究されている. 本研究では確率制御問題や統計学など応用上様々なところで現れる係数に特異性を持つ確率微分方程式や、経路に依存する係数をもつ確率微分方程式の解の研究を行う。

Outline of Annual Research Achievements

山里眞氏(琉球大学)、竹内敦司氏(東京女子大)と共同でCME+分布の密度関数に関する研究を行なった。CME+分布とは非負の無限分解可能分布で、レヴィ測度がルベーグ測度に関して絶対連続で、その密度関数が完全単調関数であるものである。CME+分布はBondesson族に属する分布と呼ばれることもある。一次元の一般化された拡散過程の初到達時刻や、逆局所時間の分布はCME+分布であることが知られている。
非負無限分解可能分布の密度関数の評価は、1980年代から近年まで多くの研究者によって研究されてきた。特にレヴィ測度の原点周辺でのある種の非退化性(Hertman-Wintner型の条件)を仮定すると、密度関数についての精密な評価を得ることができることが知られている。一方で、非負の複合ポアソン分布や、原点周辺での発散の速度が比較的遅い場合(緩変動の場合)などは、Hertman-Wintner型条件を満たさないことが確かめられる。本研究では、非負の複合ポアソン分布などのHertman-Wintner型の条件を満たさないような無限分解可能分布の場合も考察の対象にし、密度関数の評価および、時間を発展させた際の減衰の早さを調べた。研究成果は論文としてまとめ、国際誌に掲載された。
Arturo Kohatsu-Higa氏(立命館)、畑宏明氏(一橋大学)、安田和宏氏(法政大学)との共同研究で、CIR模型およびヘストン模型のリスク指標(グリークス)の研究を行っている。理論的な側面から、リスク指標に関する公式を得ることができたが、得られた公式では不連続なドリフト項を持つ確率微分方程式が現れるため、効率良くシミュレーションをする方法を検討する必要がある。

Current Status of Research Progress
Current Status of Research Progress

2: Research has progressed on the whole more than it was originally planned.

Reason

マリアバン解析などの解析的な手法を用いることができない、初到達時刻や逆局所時間過程の分布を含むクラスの密度関数の評価について一定の成果をあげることができた。
CIR模型はベッセル過程をスケール変換して得られる模型で、特異性があるため、精密な解析の手法が必要である。ヘストン模型は、CIR模型をボラティリティとして含む模型で、解析が煩雑になる。現在得られた公式では、シミュレーションの面では、まだ不十分なところはあるが、効率の良い手法を提案できるよう研究を進めていく。

Strategy for Future Research Activity

CME+分布について、複合ポアソン分布の場合は原点周辺での有界性について、一定の結果が得られたが、絶対連続である場合には、原点周辺の有界性について明 白な結果が得られていない。ラプラス指数の発散の速さが対数関数と同程度であれば、発散することが予想できるが、現在のところまだ示されていない。
昨年度取り組むことができなかったエレファントランダムウォークに関する課題ついて取り組む。特に、pが3/4より大きいときは、エレファントランダムウォークを適当にスケール変換すれば、ある確率変数に概収束することが知られている(Bercu, B., Chabanol, M.L., and Ruch, J.J. (2019))。この確率変数の分布の性質を詳しく調べたい。また、この確率変数との誤差は正規分布に収束することが知られている(Kubota, N. and Takei, M. (2019))が、この場合のモーメント収束の速さについても低次のモーメントでは評価が得られそうである。今後は高次の場合に取り組む。

Report

(3 results)
  • 2023 Research-status Report
  • 2022 Research-status Report
  • 2021 Research-status Report
  • Research Products

    (5 results)

All 2024 2023 2022 2021

All Journal Article (2 results) (of which Peer Reviewed: 2 results) Presentation (3 results)

  • [Journal Article] Space-time boundedness and asymptotic behaviors of the densities of CME-subordinators2024

    • Author(s)
      Hayashi Masafumi、Takeuchi Atsushi、Yamazato Makoto
    • Journal Title

      Stochastic Processes and their Applications

      Volume: 167 Pages: 104232-104232

    • DOI

      10.1016/j.spa.2023.104232

    • Related Report
      2023 Research-status Report
    • Peer Reviewed
  • [Journal Article] Rate of moment convergence in the central limit theorem for the elephant random walk2023

    • Author(s)
      Hayashi Masafumi、Oshiro So、Takei Masato
    • Journal Title

      Journal of Statistical Mechanics: Theory and Experiment

      Volume: 2023 Issue: 2 Pages: 023202-023202

    • DOI

      10.1088/1742-5468/acb265

    • Related Report
      2022 Research-status Report
    • Peer Reviewed
  • [Presentation] Space-time boundedness and asymptotic behaviors of the den- sities of CME-subordinators2023

    • Author(s)
      Hayashi Masafumi
    • Organizer
      Seminar at VIASM, Hanoi Vietnam
    • Related Report
      2023 Research-status Report
  • [Presentation] Elephant random walkに対する中心極限定理におけるモーメント収束の速さについて2022

    • Author(s)
      林 正史
    • Organizer
      日本数学会2022年度年会
    • Related Report
      2021 Research-status Report
  • [Presentation] エレファントランダムウォークの高次モーメントの漸近挙動について2021

    • Author(s)
      林 正史
    • Organizer
      無限粒子系、確率場の諸問題XVI
    • Related Report
      2021 Research-status Report

URL: 

Published: 2021-04-28   Modified: 2024-12-25  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi