• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Holomorphic maps between Riemann surfaces

Research Project

Project/Area Number 21K03287
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeMulti-year Fund
Section一般
Review Section Basic Section 12010:Basic analysis-related
Research InstitutionTokyo Institute of Technology

Principal Investigator

田辺 正晴  東京工業大学, 理学院, 講師 (60272663)

Project Period (FY) 2021-04-01 – 2026-03-31
Project Status Granted (Fiscal Year 2023)
Budget Amount *help
¥2,600,000 (Direct Cost: ¥2,000,000、Indirect Cost: ¥600,000)
Fiscal Year 2025: ¥520,000 (Direct Cost: ¥400,000、Indirect Cost: ¥120,000)
Fiscal Year 2024: ¥520,000 (Direct Cost: ¥400,000、Indirect Cost: ¥120,000)
Fiscal Year 2023: ¥520,000 (Direct Cost: ¥400,000、Indirect Cost: ¥120,000)
Fiscal Year 2022: ¥520,000 (Direct Cost: ¥400,000、Indirect Cost: ¥120,000)
Fiscal Year 2021: ¥520,000 (Direct Cost: ¥400,000、Indirect Cost: ¥120,000)
Keywords複素解析 / リーマン面 / 正則写像
Outline of Research at the Start

リーマン面と呼ばれるものが有る。これは、簡単に言えば、形は、球面、あるいは浮き輪の表面、2人乗り浮き輪の表面、更にはnを任意の自然数としてn人乗り浮き輪の表面、これらのどれかであり、各点の近傍が複素平面上のある開集合と同じと見れるものである。
リーマン面間の写像を考える。各点の近傍が複素平面上のある開集合と同じと見れるから、写像が各点で複素微分可能であるものを考えることができて、この様な写像をリーマン面間の正則写像という。
リーマン面間の正則写像については、単に連続な写像と比べて様々な制限があることが知られていて、この研究では、リーマン面間の正則写像について、新しい定理等を発見してゆく。

Outline of Annual Research Achievements

コンパクトリーマン面間の正則写像の剛性に関する緒性質を,ヤコビ多様体間の準同型の言葉で表現し,それら定理の結びつきについて,新しい視点を提供することを目指して研究を進めた.特に,種数2以上のコンパクトリーマン面間の正則写像について,ホモロジー群間に誘導される準同型による表現の研究を行った.
「種数2以上のコンパクトリーマン面X, Y間の正則写像の位数が素数であるとき,ホモロジー群間に誘導される準同型による表現は,X, Yで標準ホモロジー基底をうまく取れば,いくつかの行列表現のうちどちらかになる.」ことがH.H. Martensにより示されている.X, Yで標準ホモロジー基底をうまく取り,限られた行列表現(normal formと呼ばれる)に帰着させるという問題は,もともとはリーマン面の周期行列のreductionに関するポアンカレの研究から派生したものである.その後の研究でH.H. Martensの上の結果,normal formの数は2つの表現行列であることが示せていた.これを発展させて,結局正則写像の位数が素数であるときは,「標準ホモロジー基底をうまく取ればの」部分は正則自己同型であり,正則写像の数は,normal formの数2つに,X,Yの正則自己同型の数を掛けたもの以下であると予想し,証明を考えてきた.結果としては,まだ成功していない.

Current Status of Research Progress
Current Status of Research Progress

4: Progress in research has been delayed.

Reason

この問題に関して,これまでに知られている手法は全て試したように思うが,それでも特には進展が得られなかった.全く別の切り口,手法を思いつくことが必要であると感じている.

Strategy for Future Research Activity

種数2以上のコンパクトリーマン面間の正則写像について,位数が素数とは限らない場合のホモロジー表現についても考えてみる.また,コンパクトな面に限らず,ノード付きリーマン面もこの問題での研究対象とすることも考える.ノード付きリーマン面に関しては,上記のnormal formの様な研究は見当たらないので,研究対象として十分価値あるものと思われる.

Report

(3 results)
  • 2023 Research-status Report
  • 2022 Research-status Report
  • 2021 Research-status Report

URL: 

Published: 2021-04-28   Modified: 2024-12-25  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi