消散構造を持つ非線形偏微分方程式系における安定性理論の構築
Project/Area Number |
21K03327
|
Research Category |
Grant-in-Aid for Scientific Research (C)
|
Allocation Type | Multi-year Fund |
Section | 一般 |
Review Section |
Basic Section 12020:Mathematical analysis-related
|
Research Institution | Kobe University |
Principal Investigator |
上田 好寛 神戸大学, 海事科学研究科, 准教授 (50534856)
|
Project Period (FY) |
2021-04-01 – 2024-03-31
|
Project Status |
Granted (Fiscal Year 2022)
|
Budget Amount *help |
¥4,160,000 (Direct Cost: ¥3,200,000、Indirect Cost: ¥960,000)
Fiscal Year 2023: ¥1,170,000 (Direct Cost: ¥900,000、Indirect Cost: ¥270,000)
Fiscal Year 2022: ¥1,560,000 (Direct Cost: ¥1,200,000、Indirect Cost: ¥360,000)
Fiscal Year 2021: ¥1,430,000 (Direct Cost: ¥1,100,000、Indirect Cost: ¥330,000)
|
Keywords | 安定性解析 / 非線形問題 / 偏微分方程式論 / 可微分性の損失 / 漸近挙動 |
Outline of Research at the Start |
本研究では、流体力学や弾性体力学など様々な分野に現れる,消散構造を持つ非線形偏微分方程式系の解の挙動を解析することが目的である.研究の鍵を握るのは,解の振る舞いを抑える効果を持つ消散項と移流項に代表されるその他の項との関連性を明らかにすることである.近年,複雑な物理モデルに対しても,それらの関係性を代数的に表現した「安定性条件」と呼ばれる条件の下で微分方程式の解の性質が明らかになってきた.よって,これまでの物理モデルにおける解析結果を包括するような非線形偏微分方程式に対する安定性理論を構築することが最大の目標であり,得られた理論を多岐にわたった物理モデルへ応用することも視野に入れている.
|
Outline of Annual Research Achievements |
本研究では、気体力学や弾性体力学に起因する微分方程式に関する数学解析を主な目的としており、特に対称双曲型方程式系や双曲ー放物型方程式系など一般の方程式系に関する安定性理論の構築を目指している。その一例となる具体的な物理モデルとして、Euler-Maxwell方程式系・Plate方程式系・Timoshenko方程式系・粘弾性方程式系などを取り上げながら、方程式の持つ消散構造から引き出される安定性現象に着目し、研究を行なっている。特に、より物理背景に着目することで、各項が複雑に影響を及ぼしあうような方程式系を考察する際に現れる「可微分性の損失」とよばれる現象について深く解析を行っており、平衡点周りの非線形安定性解析に関して研究を進めている。 令和4年度は、前年度に行った線形安定性解析の最良性に関する研究を期に非線形問題の安定性解析に取り組んだ。具体的には時間積分で記述される記憶型消散項を考慮したTimoshenko方程式系について解析を進め、摩擦型の消散項に間する既知の結果と同程度の結果を示すことができた。またさらに、非線形を加味した記憶型消散項を持つTimoshenko方程式系についても研究を進めている。 昨年度はこれまでに比べて新型コロナウイルス感染症の影響が少なくなり、対面での研究集会も増えてきた。学会等での研究発表も増えてきており、13回の発表講演を行なった。また、神戸大学での定期的なセミナーも開催しており、これらの場での意見交換・討論を通じて今後の研究の指針を得ることができた。
|
Current Status of Research Progress |
Current Status of Research Progress
2: Research has progressed on the whole more than it was originally planned.
Reason
令和4年度は、本来の計画内容である非線形安定性の解析に取り組むことができた。具体的には非線形Timoshenko方程式系の解析であるが、本物理モデルは非線形双曲型方程式系の本質的な困難さを十分に含んでいると考えられるので、今度の目標である一般の双曲型方程式系に関する非線形安定性理論の構築に有益な知見を得たと言える。
|
Strategy for Future Research Activity |
今後は、これまでに培ってきた線形微分方程式系の安定性理論を基に様々な非線形物理モデルの解析を進める予定である。またさらに、ここで得られた知見を活かし、一般の双曲型方程式系に関する非線形安定性理論の研究にも着手する。 具体的な考察として、これまでに知られているエントロピー条件の拡張が必要であるため、Euler-Maxwell方程式系などの物理モデルでの解析を参考にその拡張について考察を進める予定である。
|
Report
(2 results)
Research Products
(23 results)