Project/Area Number |
21K03356
|
Research Category |
Grant-in-Aid for Scientific Research (C)
|
Allocation Type | Multi-year Fund |
Section | 一般 |
Review Section |
Basic Section 12040:Applied mathematics and statistics-related
|
Research Institution | Musashino University |
Principal Investigator |
|
Project Period (FY) |
2021-04-01 – 2024-03-31
|
Project Status |
Completed (Fiscal Year 2023)
|
Budget Amount *help |
¥4,030,000 (Direct Cost: ¥3,100,000、Indirect Cost: ¥930,000)
Fiscal Year 2023: ¥1,170,000 (Direct Cost: ¥900,000、Indirect Cost: ¥270,000)
Fiscal Year 2022: ¥2,210,000 (Direct Cost: ¥1,700,000、Indirect Cost: ¥510,000)
Fiscal Year 2021: ¥650,000 (Direct Cost: ¥500,000、Indirect Cost: ¥150,000)
|
Keywords | 変分不等式 / フェーズフィールド / き裂進展 / 数理モデル / 数値シミュレーション / 破壊 |
Outline of Research at the Start |
本研究では、フェーズフィールドき裂進展モデルにおいて、これまで実現できなかった開口モードと圧縮モードの両方に対応したき裂進展/破壊モデルを構築し、その有効性を確認することを目的とする。材料の圧縮による破壊に伴う非現実的な材料変位を避けるために,拘束条件を用いたエネルギーの変分不等式として導出する。 このモデルが実現すると、経年変化などで開口と圧縮の変位を繰り返しながら材料が破壊する現象の予測が可能となり、材料や構造物の耐久性のより詳しい見積もりが可能となることが期待される。
|
Outline of Final Research Achievements |
Using a phase-field crack propagation model, it was confirmed that numerical simulations of two-dimensional opening crack propagation can be performed at reasonable computational costs by using the IPOPT package in FreeFEM as a variational inequality. In addition, the external contact conditions were also modeled as variational inequalities, and for cracks that occur due to material failure due to compression, a numerical simulation was performed using a model in which the unilateral contact condition was applied to a gradient flow as the internal contact condition.It was found that when material failure occurs during a fracture in a cutting machine, the crack cross-section shape deforms significantly when the blade spacing is greater than a certain value.
|
Academic Significance and Societal Importance of the Research Achievements |
本研究では、開口モードと圧縮モードの両方に対応した変分不等式によるフェーズフィールドき裂進展/破壊数理モデルを構築し、数値シミュレーションによって現実の材料破壊現象が再現できるか検証した。材料の圧縮による破壊に伴う非現実的な変形を避けるためにモデルを修正し、変位や変位勾配に基づく拘束条件を用いたエネルギーの変分不等式を導出することで、モデルの有効性を確認した。 計算用のモデルではなく、数学的に解析可能なモデルを構築することで、その解の性質を明らかにする道筋をつけるのみならず、シンプルなモデル化を行うことで、さらなる拡張の可能性を見出すことが期待される。
|