• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Numerical Analysis of Schroedinger's problem

Research Project

Project/Area Number 21K03364
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeMulti-year Fund
Section一般
Review Section Basic Section 12040:Applied mathematics and statistics-related
Research InstitutionTokyo Institute of Technology

Principal Investigator

Nakano Yumiharu  東京工業大学, 情報理工学院, 准教授 (00452409)

Project Period (FY) 2021-04-01 – 2024-03-31
Project Status Completed (Fiscal Year 2023)
Budget Amount *help
¥2,340,000 (Direct Cost: ¥1,800,000、Indirect Cost: ¥540,000)
Fiscal Year 2023: ¥780,000 (Direct Cost: ¥600,000、Indirect Cost: ¥180,000)
Fiscal Year 2022: ¥780,000 (Direct Cost: ¥600,000、Indirect Cost: ¥180,000)
Fiscal Year 2021: ¥780,000 (Direct Cost: ¥600,000、Indirect Cost: ¥180,000)
Keywordsシュレディンガー問題 / 確率制御 / 拡散生成モデル / 確率微分方程式 / 生成モデル / 深層学習 / 確率偏微分方程式
Outline of Research at the Start

初期分布と終端分布が固定されたブラウン粒子の中で最も起こりやすい時間発展を求める問題はシュレディンガー問題と呼ばれ,機械学習分野との関連等から近年再注目されている.シュレディンガー問題は多数の有望な応用を持つが,現実的な実装のためには既存の数値解法では不十分である.本研究では空間次元が高い場合かつ所与の周辺分布が経験分布の場合にも適用可能なシュレディンガー問題の数値解法の開発とその収束を厳密に証明することを目的とする.

Outline of Final Research Achievements

We developed a numerical method for the Schroedinger's problem based on a McKean-Vlasov type stochastic control problem and proved its rigorous convergence.
Furthermore, we studied the theoretical analysis of the diffusion generative model, which is now widely used as an image generation model. Specifically, we clarified the sufficient conditions for the convergence of the generated distribution of the Denoising Diffusion Probabilistic Models to the target distribution. In the convergence proofs known from existing studies, it has been unclear what conditions must be satisfied for the parameters of the forward time process to be successful, but in this study, we derived sufficient conditions for appropriate asymptotic behavior for these parameters.

Academic Significance and Societal Importance of the Research Achievements

シュレディンガー問題は近年,生成モデルの理論的基盤として注目されているものである.本研究では特に,シュレディンガー問題において初期分布が任意の場合に適当可能な新しい数値解法を提案し,理論的正当性も与えた.このことに応用数学としての学術的意義があるのはもちろん,新しい分布補間の手段を提示できたことで,例えば,画像から画像の生成など,新たな生成モデルの展開のための一助になることが期待できる.

Report

(4 results)
  • 2023 Annual Research Report   Final Research Report ( PDF )
  • 2022 Research-status Report
  • 2021 Research-status Report
  • Research Products

    (3 results)

All 2023 Other

All Journal Article (1 results) (of which Peer Reviewed: 1 results) Presentation (1 results) (of which Int'l Joint Research: 1 results) Remarks (1 results)

  • [Journal Article] Inverse stochastic optimal controls2023

    • Author(s)
      Nakano Yumiharu
    • Journal Title

      Automatica

      Volume: 149 Pages: 110831-110831

    • DOI

      10.1016/j.automatica.2022.110831

    • Related Report
      2022 Research-status Report
    • Peer Reviewed
  • [Presentation] A kernel-based method for Schrodinger bridges2023

    • Author(s)
      Yumiharu Nakano
    • Organizer
      10th International Congress on Industrial and Applied Mathematics
    • Related Report
      2023 Annual Research Report
    • Int'l Joint Research
  • [Remarks]

    • URL

      https://www.pg.c.titech.ac.jp

    • Related Report
      2022 Research-status Report

URL: 

Published: 2021-04-28   Modified: 2025-01-30  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi