Project/Area Number |
21K03658
|
Research Category |
Grant-in-Aid for Scientific Research (C)
|
Allocation Type | Multi-year Fund |
Section | 一般 |
Review Section |
Basic Section 17020:Atmospheric and hydrospheric sciences-related
|
Research Institution | Yokohama National University |
Principal Investigator |
|
Co-Investigator(Kenkyū-buntansha) |
松岡 大祐 国立研究開発法人海洋研究開発機構, 付加価値情報創生部門(情報エンジニアリングプログラム), 副主任研究員 (80543230)
|
Project Period (FY) |
2021-04-01 – 2024-03-31
|
Project Status |
Completed (Fiscal Year 2023)
|
Budget Amount *help |
¥4,030,000 (Direct Cost: ¥3,100,000、Indirect Cost: ¥930,000)
Fiscal Year 2023: ¥1,040,000 (Direct Cost: ¥800,000、Indirect Cost: ¥240,000)
Fiscal Year 2022: ¥2,210,000 (Direct Cost: ¥1,700,000、Indirect Cost: ¥510,000)
Fiscal Year 2021: ¥780,000 (Direct Cost: ¥600,000、Indirect Cost: ¥180,000)
|
Keywords | 台風非軸対称構造 / 傾圧不安定 / 回転水槽実験 / 深層学習 / 台風 / 多角形壁雲ライフサイクル / 室内実験 / 回転水槽 |
Outline of Research at the Start |
本研究の目的は、台風条件下で行った回転水槽実験の結果を学習データとした深層学習により、力学に依存しない流体予測モデルを開発して、台風多角形壁雲のライフサイクルをもたらすトリガーを解明することである。第一段階として、台風構造に基づいた条件での回転水槽実験を実施する。第二段階では、その回転水槽実験の結果を学習データに用いた深層学習を行い、統計学的アプローチによる流体予測モデルを開発する。流体予測モデルの結果にはGrad-CAMを適用して予測根拠を調べる。回転水槽実験と深層学習を組み合わせて、台風壁雲で発生する波動のライフサイクルを左右するきっかけが、何でどこであるのかを明らかにする。
|
Outline of Final Research Achievements |
This study focused on the formation of non-axisymmetric structures in typhoons and developed a predictive model combining rotating tank experiments with deep learning. In experiments simulating baroclinic instability, 144 experiments were conducted under varying rotation speeds and water depths to thoroughly investigate the distribution of non-axisymmetric kinetic energy. Velocity analysis using Particle Image Velocimetry and wave number calculation through Fourier analysis were employed. Furthermore, a wave number estimation model using a convolutional neural network, trained with these results, was developed. This model demonstrated high accuracy in 6-class classification and has significant potential to contribute to the prediction of non-axisymmetric structures. These research findings have been widely shared through 5 conference presentations and two journal papers.
|
Academic Significance and Societal Importance of the Research Achievements |
本研究は台風の非軸対称構造の形成メカニズムを解明し、より正確な台風予測モデルの開発に寄与する可能性がある。特に、回転水槽実験と深層学習を活用した新しいアプローチは、従来の予測手法に比べて精度を大幅に向上させることが期待される。この進展により、台風予測の改善が可能となり、災害対策の効率化や被害の軽減に直接的な影響を及ぼす。社会的な安全と経済的損失の低減に貢献する。また、学術界においては、新たな研究領域を開拓し、気象学の理解を深める契機となる。
|