Project/Area Number |
21K03803
|
Research Category |
Grant-in-Aid for Scientific Research (C)
|
Allocation Type | Multi-year Fund |
Section | 一般 |
Review Section |
Basic Section 18020:Manufacturing and production engineering-related
|
Research Institution | Yokohama National University |
Principal Investigator |
MAENO TOMOYOSHI 横浜国立大学, 大学院工学研究院, 准教授 (80505397)
|
Project Period (FY) |
2021-04-01 – 2024-03-31
|
Project Status |
Completed (Fiscal Year 2023)
|
Budget Amount *help |
¥4,290,000 (Direct Cost: ¥3,300,000、Indirect Cost: ¥990,000)
Fiscal Year 2023: ¥1,040,000 (Direct Cost: ¥800,000、Indirect Cost: ¥240,000)
Fiscal Year 2022: ¥1,300,000 (Direct Cost: ¥1,000,000、Indirect Cost: ¥300,000)
Fiscal Year 2021: ¥1,950,000 (Direct Cost: ¥1,500,000、Indirect Cost: ¥450,000)
|
Keywords | 電気塑性効果 / ジュール発熱 / 変形抵抗 / 軟化 / 熱軟化 / ねじり / 圧縮 / せん断応力 / アルミニウム / チタン / 水冷 / 電気塑性 / ねじり変形 / 加工硬化 |
Outline of Research at the Start |
金属材料に電流を印加した状態で塑性変形を加えると,変形抵抗が減少し,延性が向上する電気塑性効果が報告されている.しかしながら,引張変形などにおいては,断面積減少による電流密度の集中が生じ,ジュール発熱による影響を分離して検討するのが難しい.本研究では,丸棒試験片にねじり変形を与え,断面減少が生じない条件で電気塑性効果を検証する.電流印加条件が変形抵抗と延性に及ぼす影響について調査し,また,機械的特性や微細組織の変化から電気塑性効果の生じるメカニズムについて調査する.
|
Outline of Final Research Achievements |
The electrical plasticity effect, where the flow stress of a metal decreases during plastic deformation with the application of an electric current, has been reported. To investigate the occurrence of this effect, bar torsion tests with minimal current density changes during deformation were performed. A water-cooled torsion testing machine with a current application was constructed, and torsion tests were performed on aluminium, copper, and titanium bar specimens. Tests without temperature rise were achieved for aluminium and copper, and no change in flow stress due to the current application was observed. For a titanium alloy, a temperature rise due to Joule heating occurred. Still, a comparison of the results with and without current, considering the temperature effect, showed that the decrease in yield stress observed in the titanium alloy was mainly due to the temperature rise caused by Joule heating.
|
Academic Significance and Societal Importance of the Research Achievements |
アルミニウム,銅,数十 A/mm2以下の電流印加ではジュール発熱による温度上昇や電流密度の集中を抑制すると,明瞭な変形抵抗の変化は生じないことが分かった.つまり,電気塑性効果は生じないことが分かった.また,温度上昇を抑制することが難しい電気抵抗の高いチタンにおいても,同様の電流印加においては変形抵抗の変化は生じるものの,そのほとんどはジュール発熱による温度上昇による軟化であることが,変形抵抗変化の比較およびその変化速度からわかった.
|