Project/Area Number |
21K03905
|
Research Category |
Grant-in-Aid for Scientific Research (C)
|
Allocation Type | Multi-year Fund |
Section | 一般 |
Review Section |
Basic Section 19020:Thermal engineering-related
|
Research Institution | National Institute of Advanced Industrial Science and Technology |
Principal Investigator |
Baba Soumei 国立研究開発法人産業技術総合研究所, エネルギー・環境領域, 主任研究員 (10711773)
|
Project Period (FY) |
2021-04-01 – 2024-03-31
|
Project Status |
Completed (Fiscal Year 2023)
|
Budget Amount *help |
¥4,030,000 (Direct Cost: ¥3,100,000、Indirect Cost: ¥930,000)
Fiscal Year 2023: ¥1,170,000 (Direct Cost: ¥900,000、Indirect Cost: ¥270,000)
Fiscal Year 2022: ¥910,000 (Direct Cost: ¥700,000、Indirect Cost: ¥210,000)
Fiscal Year 2021: ¥1,950,000 (Direct Cost: ¥1,500,000、Indirect Cost: ¥450,000)
|
Keywords | 微細加工 / 滴状凝縮 / TSP / 可視化計測 / 伝熱促進 / jumping droplet / マイクロチャネル / 凝縮 / 可視化 / 超撥水 / 熱交換 / 濡れ性制御 |
Outline of Research at the Start |
パワーデバイスや高速通信機器等の高発熱デバイスの除熱を目的として、3次元マイクロ流路ネットワーク構造を持つ集積熱制御デバイス開発を行う。マイクロ流路およびナノ・マイクロ構造を基板に加工し、多層積層接合により製作する。微細な構造が相変化熱輸送現象に及ぼす影響を調べるために、熱制御デバイス内での気液流動挙動や非定常熱伝達について、高速度観察および感温性蛍光粒子(TSP)を用いた可視化定量計測を試みる。
|
Outline of Final Research Achievements |
In this study, we developed an integrated thermal control device with a high-density microchannel network using silicon etching technology. Visualization techniques using temperature-sensitive paint (TSP) allowed us to visualize the heat transfer distribution on the heating surface with high temporal and spatial resolution. We also controlled multi-scale condensation phenomena using bio-inspired nano- and microstructured surfaces. These advancements enabled stable boiling without dryout at heat fluxes up to 15 W/cm^2 and provided detailed insights into heat transfer mechanisms during forced convective boiling. Our findings propose a novel approach to enhancing heat exchange processes through precise surface structure adjustments, potentially improving the efficiency of thermal control devices.
|
Academic Significance and Societal Importance of the Research Achievements |
本研究は、シリコンエッチング技術とナノ・マイクロ構造を用いて、効率的な熱制御デバイスの開発を行った。学術的意義としては、沸騰および凝縮現象のメカニズム解明に寄与する基盤的技術として可視化計測と伝熱促進のための微細加工技術の開発を行い、熱伝達率の向上を実証した。社会的意義としては、今後課題となる高性能電子機器の冷却効率向上に寄与し、省エネルギー化と機器寿命の延長への貢献が期待される。
|