Project/Area Number |
21K03909
|
Research Category |
Grant-in-Aid for Scientific Research (C)
|
Allocation Type | Multi-year Fund |
Section | 一般 |
Review Section |
Basic Section 19020:Thermal engineering-related
|
Research Institution | Muroran Institute of Technology |
Principal Investigator |
Imai Ryoji 室蘭工業大学, 大学院工学研究科, 教授 (60730223)
|
Project Period (FY) |
2021-04-01 – 2024-03-31
|
Project Status |
Completed (Fiscal Year 2023)
|
Budget Amount *help |
¥4,030,000 (Direct Cost: ¥3,100,000、Indirect Cost: ¥930,000)
Fiscal Year 2023: ¥520,000 (Direct Cost: ¥400,000、Indirect Cost: ¥120,000)
Fiscal Year 2022: ¥1,690,000 (Direct Cost: ¥1,300,000、Indirect Cost: ¥390,000)
Fiscal Year 2021: ¥1,820,000 (Direct Cost: ¥1,400,000、Indirect Cost: ¥420,000)
|
Keywords | マイクロチャネル / 三相界面 / 蒸発 / 高熱流束 / 毛細管力 / 電気毛管力 / 徐熱デバイス / 高電場 / 液膜 / 電気毛管現象 / ガラス製マイクロチャネル / 透明電極 / 凝縮器 / 動的濡れ / 電気毛管現状 / 高熱流束除熱 / 毛管力 / 静電気力 / 薄液膜蒸発 |
Outline of Research at the Start |
提案者は最低限の冷媒流量の下で薄液膜蒸発を安定的、継続的に実現するため、加熱面に設けた微細な溝(マイクロチャネル)にμmオーダーの液膜を保持し、かつそこに作用する毛細管力および静電気力(マクスウエルの応力)により蒸発により欠損した液体を補給する手法を考案した。本研究では本手法を適用した高熱流束排熱デバイスを試作し、今後の電子デバイスで要求される300W/cm2を超える除熱流束の達成を目的とする。
|
Outline of Final Research Achievements |
A test specimen was created using a microchannel and transparent electrodes that allows the flow behavior within the channel to be visualized. An electric field was applied parallel and perpendicular to the microchannel, and the driving status of the refrigerant in each electric field direction was observed. It was confirmed that the refrigerant (pure water) within the microchannel could be driven by applying a DC electric field parallel to the microchannel. An equation of motion was formulated that takes into account the inertial forces, viscous forces, capillary forces, gravity, pressure forces, and electrostatic forces acting on the liquid within the microchannel, making it possible to reproduce the driving status of the liquid within the microchannel by an electric field. Using the above flow analysis model, the effects of the electric field magnitude and electric field gradient on the liquid driving characteristics were clarified.
|
Academic Significance and Societal Importance of the Research Achievements |
きわめて高い徐熱流束の実現が可能な気固液三相界面近傍の熱流束を利用した排熱デバイスの実現の第一ステップとして,電気毛管力によるマイクロチャネル内液体の駆動を実験および数値解析により実証した.電気流体力学を利用した排熱デバイスの実現に一歩近づいた.本成果は電動化自動車および航空機に搭載されるパワーデバイスの冷却システムの小型化に貢献し,ひいては自動車や航空機のCO2排出抑制に寄与するものである.
|