Project/Area Number |
21K03991
|
Research Category |
Grant-in-Aid for Scientific Research (C)
|
Allocation Type | Multi-year Fund |
Section | 一般 |
Review Section |
Basic Section 20020:Robotics and intelligent system-related
|
Research Institution | Tsuyama National College of Technology |
Principal Investigator |
Nomura Kensaku 津山工業高等専門学校, 総合理工学科, 教授 (80198621)
|
Project Period (FY) |
2021-04-01 – 2024-03-31
|
Project Status |
Completed (Fiscal Year 2023)
|
Budget Amount *help |
¥3,250,000 (Direct Cost: ¥2,500,000、Indirect Cost: ¥750,000)
Fiscal Year 2023: ¥1,560,000 (Direct Cost: ¥1,200,000、Indirect Cost: ¥360,000)
Fiscal Year 2022: ¥1,040,000 (Direct Cost: ¥800,000、Indirect Cost: ¥240,000)
Fiscal Year 2021: ¥650,000 (Direct Cost: ¥500,000、Indirect Cost: ¥150,000)
|
Keywords | 変位縮小機構 / マイクロマニピュレーション / 磁力 |
Outline of Research at the Start |
永久磁石を使った単一体・無電力の変位縮小機構によって,指先の動きを顕微作業のスケールまで縮小する。現存技術では,1~3㎝の指先の動作を約1/1000倍して顕微鏡の作業空間へ伝えるには,電動あるいは油圧マニピュレータで大きく位置決めした後ピエゾで精密位置決めするような組合せ機構でしか実現できないが,独自の磁力駆動技術を弾性体機構に展開させて単一体で実現する。指先で細胞操作が行えるモーションスケールを持つピンセットを開発することを目指す。
|
Outline of Final Research Achievements |
Microtools used under a microscope are required to be able to perform dexterous movements similar to those of a human fingertip with high precision. Currently, the mainstream approach is to use piezoelectric actuators or electrostatic actuators, but the problem is that they become larger than microscopes due to interfaces and power supplies. We reexamined the mechanical link mechanism in which the movement of the fingertips dynamically connects to the end effector, and developed a displacement reduction mechanism that deforms an elastic body using magnetic force. As a result, we confirmed that a high displacement reduction ratio of more than 1/1000 times could be obtained. Applying this operating principle, we developed precision tweezers that can be mounted on a microscope and experimentally verified their effectiveness for microscopic work.
|
Academic Significance and Societal Importance of the Research Achievements |
顕微作業は,2~3㎝の指先の動作を約1/1000倍して顕微鏡の作業空間へ伝えるツールが望まれ,電動あるいは油圧マニピュレータで大きく位置決めした後ピエゾで精密位置決めするような組合せ機構でしか実現できない。つまり2~3㎝の変位を単体の機構で1/1000倍する縮小するのは,現在技術の欠落している穴場であり,解決すべき課題である。開発した磁力を用いた変位縮小機構は,数cmの変位を直接入力でき,1/1000倍を超える変位縮小率を有する単一体の機構であり,顕微作業用の定番ツールになり得ることが期待できる。
|