• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Atomistic modeling of dislocation dynamics with first principles accuracy

Research Project

Project/Area Number 21K04631
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeMulti-year Fund
Section一般
Review Section Basic Section 26010:Metallic material properties-related
Research InstitutionCollege of Industrial Technology

Principal Investigator

Mori Hideki  産業技術短期大学, その他部局等, 准教授 (00456998)

Project Period (FY) 2021-04-01 – 2024-03-31
Project Status Completed (Fiscal Year 2023)
Budget Amount *help
¥4,160,000 (Direct Cost: ¥3,200,000、Indirect Cost: ¥960,000)
Fiscal Year 2023: ¥520,000 (Direct Cost: ¥400,000、Indirect Cost: ¥120,000)
Fiscal Year 2022: ¥260,000 (Direct Cost: ¥200,000、Indirect Cost: ¥60,000)
Fiscal Year 2021: ¥3,380,000 (Direct Cost: ¥2,600,000、Indirect Cost: ¥780,000)
Keywords分子動力学 / 転位論 / 機械学習原子間ポテンシャル / BCC鉄 / 障害物 / 転位動力学 / 高精度機械学習原子間ポテンシャル / 原子モデリング / オロワンループ
Outline of Research at the Start

革新的な材料開発には、原子モデリングを用いて材料の物性を非経験的に評価し、その結果に基づいて開発指針を予測的に示すことが必須である。本研究では、ニューラルネットワークを用いて構築した第一原理計算精度のBCC鉄用の原子間ポテンシャルを用いてBCC鉄中の転位進展の様子、特に空孔などの格子欠陥が転位の進展に与える影響の詳細について第一原理計算精度での解析を行う。その結果に基づき、金属材料の塑性変形の素過程である転位進展の詳細を解き明かすことを目指す。

Outline of Final Research Achievements

In this study, we conducted molecular dynamics analysis to investigate the interaction between dislocation propagation and obstacles in iron. We used a high-precision interatomic potential based on machine learning for BCC iron. The improved potential calculation speed allowed us to analyze 1 million atomic-scale interactions. Interestingly, our results differ from those obtained using conventional empirical potentials, which tend to underestimate the mobility of certain dislocations. Specifically, when analyzing the interaction between edge dislocations and voids, we observed the formation of Orowan loops. Further analysis revealed the transformation of Orowan loops into Hirsch loops.

Academic Significance and Societal Importance of the Research Achievements

本研究では、機械学習技術に基づいた高精度なBCC鉄用原子間ポテンシャルを用いて鉄中転位進展と障害物との相互作用の100万原子規模の分子動力学解析を行うことに成功した。その結果、従来の経験的ポテンシャルを用いた解析では十分に信頼性のある解析を行うことは困難であり、機械学習技術などを用いた高精度な原子間ポテンシャルを用いることが重要であることを示した。また、今回改善した原子間ポテンシャルは様々な第一原理計算や実験結果などと良く整合しており、大規模高精度な鉄中欠陥の解析を可能とするものである。これらの解析結果およびポテンシャル構築は関連分野に大きな意義を持つものであると考える。

Report

(4 results)
  • 2023 Annual Research Report   Final Research Report ( PDF )
  • 2022 Research-status Report
  • 2021 Research-status Report
  • Research Products

    (12 results)

All 2024 2023 2022 2021

All Journal Article (7 results) (of which Peer Reviewed: 7 results,  Open Access: 6 results) Presentation (5 results) (of which Int'l Joint Research: 2 results,  Invited: 1 results)

  • [Journal Article] Large-Scale Atomistic Simulations of Cleavage in BCC Fe using Machine-Learning Potential2024

    • Author(s)
      SUZUDO Tomoaki、EBIHARA Kein-ichi、TSURU Tomohito、MORI Hideki
    • Journal Title

      Journal of the Society of Materials Science, Japan

      Volume: 73 Issue: 2 Pages: 129-135

    • DOI

      10.2472/jsms.73.129

    • ISSN
      0514-5163, 1880-7488
    • Year and Date
      2024-02-15
    • Related Report
      2023 Annual Research Report
    • Peer Reviewed / Open Access
  • [Journal Article] Implementation of New Boundary Condition in LAMMPS for Energetics of Screw Dislocation in BCC Iron2024

    • Author(s)
      森 英喜
    • Journal Title

      Journal of the Society of Materials Science, Japan

      Volume: 73 Issue: 2 Pages: 136-140

    • DOI

      10.2472/jsms.73.136

    • ISSN
      0514-5163, 1880-7488
    • Year and Date
      2024-02-15
    • Related Report
      2023 Annual Research Report
    • Peer Reviewed / Open Access
  • [Journal Article] Emergence of crack tip plasticity in semi-brittle α-Fe2024

    • Author(s)
      Suzudo T.、Ebihara K.、Tsuru T.、Mori H.
    • Journal Title

      Journal of Applied Physics

      Volume: 135 Issue: 7

    • DOI

      10.1063/5.0178940

    • Related Report
      2023 Annual Research Report
    • Peer Reviewed / Open Access
  • [Journal Article] Implementation of Atomic Stress Calculations with Artificial Neural Network Potentials2023

    • Author(s)
      Lobzenko Ivan、Tsuru Tomohito、Mori Hideki、Matsunaka Daisuke、Shiihara Yoshinori
    • Journal Title

      MATERIALS TRANSACTIONS

      Volume: 64 Issue: 10 Pages: 2481-2488

    • DOI

      10.2320/matertrans.MT-M2023093

    • ISSN
      1345-9678, 1347-5320
    • Year and Date
      2023-10-01
    • Related Report
      2023 Annual Research Report
    • Peer Reviewed / Open Access
  • [Journal Article] Dynamic interaction between dislocations and obstacles in bcc iron based on atomic potentials derived using neural networks2023

    • Author(s)
      Mori Hideki、Tsuru Tomohito、Okumura Masahiko、Matsunaka Daisuke、Shiihara Yoshinori、Itakura Mitsuhiro
    • Journal Title

      Physical Review Materials

      Volume: 7 Issue: 6

    • DOI

      10.1103/physrevmaterials.7.063605

    • Related Report
      2023 Annual Research Report
    • Peer Reviewed
  • [Journal Article] Cleavages along {110} in bcc iron emit dislocations from the curved crack fronts2022

    • Author(s)
      Suzudo Tomoaki、Ebihara Ken-ichi、Tsuru Tomohito、Mori Hideki
    • Journal Title

      Scientific Reports

      Volume: 12 Issue: 1 Pages: 19701-19701

    • DOI

      10.1038/s41598-022-24357-5

    • Related Report
      2022 Research-status Report
    • Peer Reviewed / Open Access
  • [Journal Article] Artificial neural network molecular mechanics of iron grain boundaries2022

    • Author(s)
      Shiihara Yoshinori、Kanazawa Ryosuke、Matsunaka Daisuke、Lobzenko Ivan、Tsuru Tomohito、Kohyama Masanori、Mori Hideki
    • Journal Title

      Scripta Materialia

      Volume: 207 Pages: 114268-114268

    • DOI

      10.1016/j.scriptamat.2021.114268

    • Related Report
      2021 Research-status Report
    • Peer Reviewed / Open Access
  • [Presentation] Investigation of mobility of screw dislocation in BCC iron by using neural network atomic potential2023

    • Author(s)
      Hideki Mori
    • Organizer
      The International Conference on PROCESSING & MANUFACTURING OF ADVANCED MATERIALS Processing, Fabrication, Properties, Applications
    • Related Report
      2023 Annual Research Report
    • Int'l Joint Research
  • [Presentation] 材料強度の解析および予測的評価に向けた高精度ニューラルネットワーク型原子間ポテンシャルの開発と適用2022

    • Author(s)
      森英喜
    • Organizer
      第2回マルチスケールマテリアルモデリングシンポジウム
    • Related Report
      2022 Research-status Report
    • Invited
  • [Presentation] Investigation of interaction between dislocations and obstacles in BCC iron by using neural network atomic potential2022

    • Author(s)
      Hideki Mori, Mitsuhiro Itakura, Masahiko Okumura, Tomohito Tsuru, Yoshinori Shiihara, Daisuke Matsunaka
    • Organizer
      8th Asian Pacific Congress on Computational Mechanics
    • Related Report
      2022 Research-status Report
    • Int'l Joint Research
  • [Presentation] 機械学習ポテンシャルを用いた BCC 鉄における破壊の分子動力学シミュレーション2022

    • Author(s)
      鈴土知明,海老原健一,都留智仁,森英喜
    • Organizer
      日本金属学会2022年春期講演(第170回)大会
    • Related Report
      2021 Research-status Report
  • [Presentation] ニューラルネットワーク原子間ポテンシャルを用いた BCC鉄中の転位とボイドの相互作用解析2021

    • Author(s)
      森英喜,板倉充洋,奥村雅彦,椎原良典,松中大介
    • Organizer
      日本金属学会2021年秋期講演(第169回)大会
    • Related Report
      2021 Research-status Report

URL: 

Published: 2021-04-28   Modified: 2025-01-30  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi