Project/Area Number |
21K04711
|
Research Category |
Grant-in-Aid for Scientific Research (C)
|
Allocation Type | Multi-year Fund |
Section | 一般 |
Review Section |
Basic Section 26050:Material processing and microstructure control-related
|
Research Institution | Osaka University |
Principal Investigator |
|
Project Period (FY) |
2021-04-01 – 2024-03-31
|
Project Status |
Completed (Fiscal Year 2023)
|
Budget Amount *help |
¥4,290,000 (Direct Cost: ¥3,300,000、Indirect Cost: ¥990,000)
Fiscal Year 2023: ¥1,040,000 (Direct Cost: ¥800,000、Indirect Cost: ¥240,000)
Fiscal Year 2022: ¥1,040,000 (Direct Cost: ¥800,000、Indirect Cost: ¥240,000)
Fiscal Year 2021: ¥2,210,000 (Direct Cost: ¥1,700,000、Indirect Cost: ¥510,000)
|
Keywords | ミストCVD / 酸化亜鉛 / 微粒子 / ガスセンサ / プラズマ支援プロセス / ガスセンサー |
Outline of Research at the Start |
酸化物半導体材料の表界面領域の物理的・化学的特性付与によって発現した機能により、デバイス特性を大きく向上させる革新的な半導体デバイス創製にブレークスルーをもたらす技術開発を念頭に、新しい表面微細構造形成プロセス技術として3次元ナノ構造を有する酸化物半導体薄膜を形成する技術の確立を目指す。プラズマの特徴である「高活性な反応場」に「微小液滴」を導入し、それらの反応を能動的制御することにより酸化物半導体微粒子の形状制御を行う技術の開発と、その微粒子を利用した酸化物半導体薄膜の3次元微細構造形成・制御技術の確立を目的とする。
|
Outline of Final Research Achievements |
For development of innovative semiconductor devices with greatly improved device properties through the functionality expressed by imparting to the surface interface region of oxide semiconductor materials with physical and chemical properties, the formation technology of high-quality 3D zinc oxide thin films with the desired optimal crystal structure and composition, and with a thin film structure that has an extreme specific surface area have been developed. These results suggest that radicals generated in the plasma due to the vapor supplied by the droplet contribute to the formation of zinc oxide fine particles from the droplet in the plasma, and that the droplet size in the initial plasma stage affects the shape of the fine particles.
|
Academic Significance and Societal Importance of the Research Achievements |
微小液滴を用いてプラズマで反応を支援することにより(1)プラズマを用いた気相中での高反応場と(2)微小液滴の蒸発に起因した製膜前駆体の高速供給により、低温・高速製膜を実現でき、さらに微小液滴界面での反応により生成される材料の組成・結晶性および構造の精密制御できるプロセスはあまり例がなく独創的である。 2)本研究は従来研究には無い、プラズマという高反応場と微小液滴を用いた3次元ナノ構造形成・制御可能な独創的なプロセス開発の研究であり、次世代の新規機能性材料創成をも可能にするプロセスであり学術的な意義も高い。
|